Skip to main content

Research Repository

Advanced Search

All Outputs (27)

Label-free Brillouin endo-microscopy for the quantitative 3D imaging of sub-micrometre biology (2024)
Journal Article
La Cavera III, S., Chauhan, V. M., Hardiman, W., Yao, M., Fuentes-Domínguez, R., Setchfield, K., …Clark, M. (2024). Label-free Brillouin endo-microscopy for the quantitative 3D imaging of sub-micrometre biology. Communications Biology, 7, Article 451. https://doi.org/10.1038/s42003-024-06126-4

This report presents an optical fibre-based endo-microscopic imaging tool that simultaneously measures the topographic profile and 3D viscoelastic properties of biological specimens through the phenomenon of time-resolved Brillouin scattering. This u... Read More about Label-free Brillouin endo-microscopy for the quantitative 3D imaging of sub-micrometre biology.

Classification of cancer cells at the sub-cellular level by phonon microscopy using deep learning (2023)
Journal Article
Pérez-Cota, F., Martínez-Arellano, G., La Cavera III, S., Hardiman, W., Thornton, L., Fuentes-Domínguez, R., …Clark, M. (2023). Classification of cancer cells at the sub-cellular level by phonon microscopy using deep learning. Scientific Reports, 13, Article 16228. https://doi.org/10.1038/s41598-023-42793-9

There is a consensus about the strong correlation between the elasticity of cells and tissue and their normal, dysplastic, and cancerous states. However, developments in cell mechanics have not seen significant progress in clinical applications. In t... Read More about Classification of cancer cells at the sub-cellular level by phonon microscopy using deep learning.

Parallel imaging with phonon microscopy using a multi-core fibre bundle detection (2023)
Journal Article
Fuentes-Domínguez, R., Yao, M., Hardiman, W., La Cavera III, S., Setchfield, K., Pérez-Cota, F., …Clark, M. (2023). Parallel imaging with phonon microscopy using a multi-core fibre bundle detection. Photoacoustics, 31, Article 100493. https://doi.org/10.1016/j.pacs.2023.100493

In this paper, we show a proof-of-concept method to parallelise phonon microscopy measurements for cell elasticity imaging by demonstrating a 3-fold increase in acquisition speed which is limited by current acquisition hardware. Phonon microscopy is... Read More about Parallel imaging with phonon microscopy using a multi-core fibre bundle detection.

Imaging Microstructure on Optically Rough Surfaces Using Spatially Resolved Acoustic Spectroscopy (2023)
Journal Article
Li, W., Dryburgh, P., Pieris, D., Patel, R., Clark, M., & Smith, R. J. (2023). Imaging Microstructure on Optically Rough Surfaces Using Spatially Resolved Acoustic Spectroscopy. Applied Sciences, 13(6), Article 3424. https://doi.org/10.3390/app13063424

The microstructure of a material defines many of its mechanical properties. Tracking the microstructure of parts during their manufacturing is needed to ensure the designed performance can be obtained, especially for additively manufactured parts. Me... Read More about Imaging Microstructure on Optically Rough Surfaces Using Spatially Resolved Acoustic Spectroscopy.

Polarization-Sensitive Super-Resolution Phononic Reconstruction of Nanostructures (2022)
Journal Article
Fuentes-Domínguez, R., Naznin, S., La Cavera III, S., Cousins, R., Pérez-Cota, F., Smith, R. J., & Clark, M. (2022). Polarization-Sensitive Super-Resolution Phononic Reconstruction of Nanostructures. ACS Photonics, https://doi.org/10.1021/acsphotonics.1c01607

In this paper, we show for the first time the polarization-sensitive super-resolution phononic reconstruction of multiple nanostructures in a liquid environment by overcoming the diffraction limit of the optical system (1 μm). By using time-resolved... Read More about Polarization-Sensitive Super-Resolution Phononic Reconstruction of Nanostructures.

Measurement of the single crystal elasticity matrix of polycrystalline materials (2021)
Journal Article
Dryburgh, P., Li, W., Pieris, D., Fuentes-Domínguez, R., Patel, R., Smith, R. J., & Clark, M. (2022). Measurement of the single crystal elasticity matrix of polycrystalline materials. Acta Materialia, 225, Article 117551. https://doi.org/10.1016/j.actamat.2021.117551

Many engineering metals are polycrystalline, as such the elasticity, crystalline orientation and grain distribution are cardinal factors in determining the physical properties of the material. The grain distribution can be measured using a number of... Read More about Measurement of the single crystal elasticity matrix of polycrystalline materials.

Phonon imaging in 3D with a fibre probe (2021)
Journal Article
La Cavera III, S., Pérez-Cota, F., Smith, R. J., & Clark, M. (2021). Phonon imaging in 3D with a fibre probe. Light: Science and Applications, 10, Article 91. https://doi.org/10.1038/s41377-021-00532-7

We show for the first time that a single ultrasonic imaging fibre is capable of simultaneously accessing 3D spatial information and mechanical properties from microscopic objects. The novel measurement system consists of two ultrafast lasers that exc... Read More about Phonon imaging in 3D with a fibre probe.

3D phonon microscopy with sub-micron axial-resolution (2021)
Journal Article
Smith, R. J., Perez-Cota, F., Marques, L., & Clark, M. (2021). 3D phonon microscopy with sub-micron axial-resolution. Scientific Reports, 11(1), Article 3301. https://doi.org/10.1038/s41598-021-82639-w

© 2021, The Author(s). Brillouin light scattering (BLS) is an emerging method for cell imaging and characterisation. It allows elasticity-related contrast, optical resolution and label-free operation. Phonon microscopy detects BLS from laser generate... Read More about 3D phonon microscopy with sub-micron axial-resolution.

Non-destructive detection of machining-induced white layers through grain size and crystallographic texture-sensitive methods (2021)
Journal Article
Brown, M., Pieris, D., Wright, D., Crawforth, P., M'Saoubi, R., McGourlay, J., …Ghadbeigi, H. (2021). Non-destructive detection of machining-induced white layers through grain size and crystallographic texture-sensitive methods. Materials and Design, 200, https://doi.org/10.1016/j.matdes.2021.109472

Detection of machining-induced white layers is currently a destructive inspection process with a form of cross-sectional microscopy required. This paper, therefore, reports on the development of a novel non-destructive inspection method for detecting... Read More about Non-destructive detection of machining-induced white layers through grain size and crystallographic texture-sensitive methods.

Design of a resonant Luneburg lens for surface acoustic waves (2020)
Journal Article
Fuentes-Domínguez, R., Yao, M., Colombi, A., Dryburgh, P., Pieris, D., Jackson-Crisp, A., …Clark, M. (2021). Design of a resonant Luneburg lens for surface acoustic waves. Ultrasonics, 111, Article 106306. https://doi.org/10.1016/j.ultras.2020.106306

© 2020 In this work we employ additive manufacturing to print a circular array of micropillars on an aluminium slab turning its top surface into a graded index metasurface for surface acoustic waves (SAW). The graded metasurface reproduces a Luneburg... Read More about Design of a resonant Luneburg lens for surface acoustic waves.

Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells (2020)
Journal Article
Pérez-Cota, F., Fuentes-Domínguez, R., La Cavera III, S., Hardiman, W., Yao, M., Setchfield, K., …Clark, M. (2020). Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells. Journal of Applied Physics, 128(16), Article 160902. https://doi.org/10.1063/5.0023744

© 2020 Author(s). Characterization of the elasticity of biological cells is growing as a new way to gain insight into cell biology. Cell mechanics are related to most aspects of cellular behavior, and applications in research and medicine are broad.... Read More about Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells.

Tailored elastic surface to body wave Umklapp conversion (2020)
Journal Article
Chaplain, G. J., De Ponti, J. M., Colombi, A., Fuentes-Dominguez, R., Dryburg, P., Pieris, D., …Craster, R. V. (2020). Tailored elastic surface to body wave Umklapp conversion. Nature Communications, 11(1), Article 3267. https://doi.org/10.1038/s41467-020-17021-x

© 2020, The Author(s). Elastic waves guided along surfaces dominate applications in geophysics, ultrasonic inspection, mechanical vibration, and surface acoustic wave devices; precise manipulation of surface Rayleigh waves and their coupling with pol... Read More about Tailored elastic surface to body wave Umklapp conversion.

Characterising the size and shape of metallic nano-structures by their acoustic vibrations (2020)
Journal Article
Fuentes-Domínguez, R., Naznin, S., Marques, L., Pérez-Cota, F., Smith, R. J., & Clark, M. (2020). Characterising the size and shape of metallic nano-structures by their acoustic vibrations. Nanoscale, 12(26), 14230-14236. https://doi.org/10.1039/d0nr03410j

© 2020 The Royal Society of Chemistry. The characterisation of metallic nano-structures is of great importance as their optical properties are strongly dependent on their size and shape. Inaccurate size or shape characterisation can result in mislead... Read More about Characterising the size and shape of metallic nano-structures by their acoustic vibrations.

Time resolved Brillouin fiber-spectrometer (2019)
Journal Article
La Cavera, S., Pérez-Cota, F., Fuentes-Domínguez, R., Smith, R. J., & Clark, M. (2019). Time resolved Brillouin fiber-spectrometer. Optics Express, 27(18), 25064-25071. https://doi.org/10.1364/OE.27.025064

This report introduces a novel time resolved Brillouin spectrometer, consisting of an opto-acoustic transducer which resides on the tip of a single-mode optical fiber of arbitrary length with 125 µm outer diameter and 5 µm sensing diameter. Demonstra... Read More about Time resolved Brillouin fiber-spectrometer.

Spatially resolved acoustic spectroscopy for integrity assessment in wire–arc additive manufacturing (2019)
Journal Article
Dryburgh, P., Pieris, D., Martina, F., Patel, R., Sharples, S., Li, W., …Smith, R. J. (2019). Spatially resolved acoustic spectroscopy for integrity assessment in wire–arc additive manufacturing. Additive Manufacturing, 28, 236-251. https://doi.org/10.1016/j.addma.2019.04.015

Wire-arc additive manufacturing (WAAM) is an emergent method for the production and repair of high value components. Introduction of plastic strain by inter-pass rolling has been shown to produce grain refinement and improve mechanical properties, ho... Read More about Spatially resolved acoustic spectroscopy for integrity assessment in wire–arc additive manufacturing.

Thickness measurement of polymer thin films with high frequency ultrasonic transducers (2019)
Journal Article
Smith, R. J., Cavera, S. L., Pérez-Cota, F., Marques, L., & Clark, M. (2019). Thickness measurement of polymer thin films with high frequency ultrasonic transducers. AIP Conference Proceedings, 2102(1), 040015-1–040015-6. https://doi.org/10.1063/1.5099765

© 2019 Author(s). In this paper we present a method for characterizing the thickness, and more interestingly, the variation of thickness in polymer thin films (

New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy (2019)
Journal Article
Pérez-Cota, F., Smith, R. J., Elsheikha, H. M., & Clark, M. (2019). New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy. Biomedical Optics Express, 10(5), 2399-2408. https://doi.org/10.1364/BOE.10.002399

The single cell eukaryotic protozoan Acanthamoeba castellanii exhibits a remarkable ability to switch from a vegetative trophozoite stage to a cystic form, in response to stressors. This phenotypic switch involves changes in gene expression and synth... Read More about New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy.

Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing (2019)
Journal Article
Pieris, D., Patel, R., Dryburgh, P., Hirsch, M., Li, W., Sharples, S., …Clark, M. (2019). Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing. Insight - Non-Destructive Testing & Condition Monitoring, 61(3), 132-137. https://doi.org/10.1784/insi.2019.61.3.132

High-integrity engineering applications such as aerospace will not permit the incorporation of components containing any structural defects. The current generation of additive manufacturing (AM) platforms yield components with relatively high level... Read More about Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing.

Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy (2018)
Journal Article
Patel, R., Hirsch, M., Dryburgh, P., Pieris, D., Achamfuo-Yeboah, S., Smith, R., …Clark, M. (2018). Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy. Applied Sciences, 8(10), Article 1991. https://doi.org/10.3390/app8101991

Additive manufacturing (AM) is a production technology where material is accumulated to create a structure, often through added shaped layers. The major advantage of additive manufacturing is in creating unique and complex parts for use in areas wher... Read More about Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy.

Non destructive evaluation of biological cells (2018)
Journal Article
Pérez-Cota, F., Smith, R. J., Moradi, E., Webb, K. F., & Clark, M. (2019). Non destructive evaluation of biological cells. AIP Conference Proceedings, 2102, https://doi.org/10.1063/1.5099737

© 2019 Author(s). Regenerative medicine promises to be the next revolution in health care. This technology, which will be the first systematic manufacturing of biological parts for human consumption, requires non destructive evaluatioin (NDE) thechni... Read More about Non destructive evaluation of biological cells.