Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Reliability and Characterization of Nanosilver Joints Prepared by a Time-Reduced Sintering Process (2021)
Journal Article
Dai, J., Li, J., Agyakwa, P., Corfield, M., & Johnson, C. M. (2021). Reliability and Characterization of Nanosilver Joints Prepared by a Time-Reduced Sintering Process. IEEE Transactions on Device and Materials Reliability, 21(4), 536-543. https://doi.org/10.1109/TDMR.2021.3118323

This study investigates the power cycling reliability of nanosilver sintered joints formed by a time-reduced sintering process, designed for use on a die bonder. A range of sintering parameters, reflecting different levels of manufacturability, were... Read More about Reliability and Characterization of Nanosilver Joints Prepared by a Time-Reduced Sintering Process.

Shear strength of die attachments prepared using dry nanosilver film by a time-reduced sintering process (2020)
Journal Article
Dai, J., Li, J., Agyakwa, P., Corfield, M., & Johnson, C. M. (2020). Shear strength of die attachments prepared using dry nanosilver film by a time-reduced sintering process. Microelectronics Reliability, 111, Article 113740. https://doi.org/10.1016/j.microrel.2020.113740

This study investigates a time-reduced sintering process for die attachment, prepared, within a processing time of several seconds using dry nanosilver film. The effects of three main sintering parameters, sintering temperature (220 to 300 °C), sinte... Read More about Shear strength of die attachments prepared using dry nanosilver film by a time-reduced sintering process.

Time-efficient sintering processes to attach power devices using nanosilver dry film (2017)
Journal Article
Dai, J., Li, J., Agyakwa, P., & Mark Johnson, C. (2017). Time-efficient sintering processes to attach power devices using nanosilver dry film. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2017(HiTEN), 000207–000212. https://doi.org/10.4071/2380-4491.2017.hiten.207

Pressure-assisted sintering processes to attach power devices using wet nanosilver pastes with time scales of minutes to a few hours have been widely reported. This paper presents our work on time-efficient sintering, using nanosilver dry film and an... Read More about Time-efficient sintering processes to attach power devices using nanosilver dry film.

Quantitative Microstructure Characterization of Ag Nanoparticle Sintered Joints for Power Die Attachment (2014)
Journal Article
Wang, Y., Li, J., Agyakwa, P., Johnson, C. M., & Li, S. (2014). Quantitative Microstructure Characterization of Ag Nanoparticle Sintered Joints for Power Die Attachment. Molecular Crystals and Liquid Crystals, 604(1), 11-26. https://doi.org/10.1080/15421406.2014.967647

© 2014 Copyright © Taylor & Francis Group, LLC. The samples of sintered Ag joints for power die attachments were prepared using paste of Ag nanoparticles at 240°C and 5 MPa for 3 to 17 minutes. Their microstructural features were quantitatively cha... Read More about Quantitative Microstructure Characterization of Ag Nanoparticle Sintered Joints for Power Die Attachment.

Calibration of a novel microstructural damage model for wire bonds (2014)
Journal Article
Yang, L., Agyakwa, P., & Johnson, C. (2014). Calibration of a novel microstructural damage model for wire bonds. IEEE Transactions on Device and Materials Reliability, 14(4), 989-994. https://doi.org/10.1109/TDMR.2014.2354739

In a previous paper, a new time-domain damage-based physics model was proposed for the lifetime prediction of wire bond interconnects in power electronic modules. Unlike cycle-dependent life prediction methodologies, this model innovatively incorpora... Read More about Calibration of a novel microstructural damage model for wire bonds.

Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules (2013)
Journal Article
Yang, L., Agyakwa, P. A., & Johnson, C. M. (2013). Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules. IEEE Transactions on Device and Materials Reliability, 13(1), https://doi.org/10.1109/TDMR.2012.2235836

This paper presents a review of the commonly adopted physics-of-failure-based life prediction models for wire bond interconnects in power electronic modules. In the discussed models, lifetime is generally accounted for by loading temperature extreme... Read More about Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules.