Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Functional performance of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold: a pre-clinical in vitro tribological study (2024)
Journal Article
Cowie, R. M., Macri-Pellizzeri, L., McLaren, J., Sanderson, W. J., Felfel, R. M., Scotchford, C. A., …Jennings, L. M. (2024). Functional performance of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold: a pre-clinical in vitro tribological study. Royal Society Open Science, 11(1), Article 230431. https://doi.org/10.1098/rsos.230431

Osteochondral grafts are used for repair of focal osteochondral lesions. Autologous grafts are the gold standard treatment; however, limited graft availability and donor site morbidity restrict use. Therefore, there is a clinical need for different g... Read More about Functional performance of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold: a pre-clinical in vitro tribological study.

Evolution of silicate bioglass particles as porous microspheres with a view towards orthobiologics (2022)
Journal Article
Islam, M. T., Nuzulia, N. A., Macri-Pellizzeri, L., Nigar, F., Sari, Y. W., & Ahmed, I. (2022). Evolution of silicate bioglass particles as porous microspheres with a view towards orthobiologics. Journal of Biomaterials Applications, 36(8), 1427-1443. https://doi.org/10.1177/08853282211059294

Although FDA approved and clinically utilised, research on 45S5 Bioglass® and S53P4 including other bioactive glasses continues in order to advance their applicability for a range of alternate applications. For example, rendering these particles poro... Read More about Evolution of silicate bioglass particles as porous microspheres with a view towards orthobiologics.

Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold (2022)
Journal Article
Pitrolino, K. A., Felfel, R. M., Pellizzeri, L. M., McLaren, J., Popov, A. A., Sottile, V., …Grant, D. M. (2022). Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold. Carbohydrate Polymers, 282, Article 119126. https://doi.org/10.1016/j.carbpol.2022.119126

An innovative approach was developed to engineer a multi-layered chitosan scaffold for osteochondral defect repair. A combination of freeze drying and porogen-leaching out methods produced a porous, bioresorbable scaffold with a distinct gradient of... Read More about Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold.

Effect of varying the Mg with Ca content in highly porous phosphate-based glass microspheres (2020)
Journal Article
Islam, M. T., Macri-Pellizzeri, L., Hossain, K. M. Z., Sottile, V., & Ahmed, I. (2021). Effect of varying the Mg with Ca content in highly porous phosphate-based glass microspheres. Materials Science and Engineering: C, 120, Article 111668. https://doi.org/10.1016/j.msec.2020.111668

Natural ventilation is a low energy strategy used in many building types. Design approaches are mature but are dependent on variables with high uncertainty, such as the aerodynamic behaviour of purpose provided openings (PPOs), which need improved ch... Read More about Effect of varying the Mg with Ca content in highly porous phosphate-based glass microspheres.

Live Simultaneous Monitoring of Mineral Deposition and Lipid Accumulation in Differentiating Stem Cells (2019)
Journal Article
De Melo, N., McGinlay, S., Markus, R., Macri-Pellizzeri, L., Symonds, M. E., Ahmed, I., & Sottile, V. (2019). Live Simultaneous Monitoring of Mineral Deposition and Lipid Accumulation in Differentiating Stem Cells. Biomimetics, 4(3), 1-10. https://doi.org/10.3390/biomimetics4030048

Mesenchymal stem cells (MSCs) are progenitors for bone-forming osteoblasts and lipid-storing adipocytes, two major lineages co-existing in bone marrow. When isolated in vitro, these stem cells recapitulate osteoblast or adipocyte formation if treated... Read More about Live Simultaneous Monitoring of Mineral Deposition and Lipid Accumulation in Differentiating Stem Cells.

Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model (2019)
Journal Article
McLaren, J. S., Macri-Pellizzeri, L., Zakir Hossain, K. M., Patel, U., Grant, D. M., Scammell, B. E., …Sottile, V. (2019). Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model. ACS Applied Materials and Interfaces, 11(17), 15436–15446. https://doi.org/10.1021/acsami.9b04603

Phosphate-based glasses (PBG) are bioactive and fully degradable materials with tailorable degradation rates. PBGs can be produced as porous microspheres through a single-step process, using changes in their formulation and geometry to produce varyin... Read More about Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model.

Live quantitative monitoring of mineral deposition in stem cells using tetracycline hydrochloride (2018)
Journal Article
Macri-Pellizzeri, L., De Melo, N., Ahmed, I., Grant, D. M., Scammell, B., & Sottile, V. (2018). Live quantitative monitoring of mineral deposition in stem cells using tetracycline hydrochloride. Tissue Engineering Part C Methods, 24(3), https://doi.org/10.1089/ten.TEC.2017.0400

The final stage of in vitro osteogenic differentiation is characterized by the production of mineral deposits containing calcium cations and inorganic phosphates, which populate the extracellular matrix surrounding the cell monolayer. Conventional hi... Read More about Live quantitative monitoring of mineral deposition in stem cells using tetracycline hydrochloride.