Skip to main content

Research Repository

Advanced Search

All Outputs (10)

The Modular μSiM: a Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro (2022)
Journal Article
McCloskey, M. C., Kasap, P., Ahmad, S. D., Su, S., Chen, K., Mansouri, M., …McGrath, J. L. (2022). The Modular μSiM: a Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro. Advanced Healthcare Materials, 11(18), Article 2200804. https://doi.org/10.1002/adhm.202200804

Advanced in vitro tissue chip models can reduce and replace animal experimentation and may eventually support "on-chip" clinical trials. To realize this potential, however, tissue chip platforms must be both mass-produced and reconfigurable to allow... Read More about The Modular μSiM: a Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro.

Non-invasive hydrodynamic imaging in plant roots at cellular resolution (2021)
Journal Article
Pascut, F. C., Couvreur, V., Dietrich, D., Leftley, N., Reyt, G., Boursiac, Y., …Webb, K. F. (2021). Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nature Communications, 12(1), 1-7. https://doi.org/10.1038/s41467-021-24913-z

A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelli... Read More about Non-invasive hydrodynamic imaging in plant roots at cellular resolution.

Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells (2020)
Journal Article
Pérez-Cota, F., Fuentes-Domínguez, R., La Cavera III, S., Hardiman, W., Yao, M., Setchfield, K., …Clark, M. (2020). Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells. Journal of Applied Physics, 128(16), Article 160902. https://doi.org/10.1063/5.0023744

© 2020 Author(s). Characterization of the elasticity of biological cells is growing as a new way to gain insight into cell biology. Cell mechanics are related to most aspects of cellular behavior, and applications in research and medicine are broad.... Read More about Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells.

Surface plasmon resonance imaging of excitable cells (2019)
Journal Article
Howe, C. L., Webb, K. F., Abayzeed, S. A., Anderson, D. J., Denning, C., & Russell, N. A. (2019). Surface plasmon resonance imaging of excitable cells. Journal of Physics D: Applied Physics, 52(10), Article 104001. https://doi.org/10.1088/1361-6463/aaf849

Surface plasmons (SPs) are surface charge density oscillations occuring at a metal/dieletric interface and are highly sensitive to refractive index variations adjacent to the surface. This sensitivity has been exploited successfully for chemical and... Read More about Surface plasmon resonance imaging of excitable cells.

Non destructive evaluation of biological cells (2018)
Journal Article
Pérez-Cota, F., Smith, R. J., Moradi, E., Webb, K. F., & Clark, M. (2019). Non destructive evaluation of biological cells. AIP Conference Proceedings, 2102, https://doi.org/10.1063/1.5099737

© 2019 Author(s). Regenerative medicine promises to be the next revolution in health care. This technology, which will be the first systematic manufacturing of biological parts for human consumption, requires non destructive evaluatioin (NDE) thechni... Read More about Non destructive evaluation of biological cells.

Sensitive detection of voltage transients using differential intensity surface plasmon resonance system (2017)
Journal Article
Abayzeed, S. A., Smith, R. J., Webb, K. F., Somekh, M. G., & See, C. W. (in press). Sensitive detection of voltage transients using differential intensity surface plasmon resonance system. Optics Express, 25(25), https://doi.org/10.1364/OE.25.031552

This paper describes theoretical and experimental study of the fundamentals of using surface plasmon resonance (SPR) for label-free detection of voltage. Plasmonic voltage sensing relies on the capacitive properties of metal-electrolyte interface tha... Read More about Sensitive detection of voltage transients using differential intensity surface plasmon resonance system.

Responsivity of the differential-intensity surface plasmon resonance instrument (2016)
Journal Article
Abayzeed, S. A., Smith, R. J., Webb, K. F., Somekh, M. G., & See, C. W. (2016). Responsivity of the differential-intensity surface plasmon resonance instrument. Sensors and Actuators B: Chemical, 235, 627-635. https://doi.org/10.1016/j.snb.2016.05.117

Surface plasmon resonance is used for the sensitive measurement of minute concentrations of bio-analytes and probing of electrochemical processes. Typical refractive index sensitivity, for the intensity approach, is around 10−6 refractive index units... Read More about Responsivity of the differential-intensity surface plasmon resonance instrument.

Sub-100 nm resolution microscopy based on proximity projection grating scheme (2015)
Journal Article
Hu, F., Somekh, M. G., Albutt, D. J., Webb, K., Moradi, E., & See, C. W. (2015). Sub-100 nm resolution microscopy based on proximity projection grating scheme. Scientific Reports, 5, https://doi.org/10.1038/srep08589

Structured illumination microscopy (SIM) has been widely used in life science imaging applications. The maximum resolution improvement of SIM, compared to conventional bright field system is a factor of 2. Here we present an approach to structured il... Read More about Sub-100 nm resolution microscopy based on proximity projection grating scheme.

Identification of a nonselective cation channel in isolated lens fiber cells that is activated by cell shrinkage (2012)
Journal Article
Gunning, S. J., Chung, K. K., Donaldson, P. J., & Webb, K. F. (2012). Identification of a nonselective cation channel in isolated lens fiber cells that is activated by cell shrinkage. American Journal of Physiology - Cell Physiology, 303(12), C1252-C1259. https://doi.org/10.1152/ajpcell.00237.2012

The initiation of lens cataract has long been associated with the development of a membrane "leak" in lens fiber cells that depolarizes the lens intracellular potential and elevates intracellular Na+ and Ca2+ concentrations. It has been proposed that... Read More about Identification of a nonselective cation channel in isolated lens fiber cells that is activated by cell shrinkage.