Skip to main content

Research Repository

Advanced Search

All Outputs (70)

A facile one step route that introduces functionality to polymer powders for laser sintering (2024)
Journal Article
Krumins, E., Crawford, L. A., Rogers, D. M., Machado, F., Taresco, V., East, M., …Howdle, S. M. (2024). A facile one step route that introduces functionality to polymer powders for laser sintering. Nature Communications, 15(1), Article 3137. https://doi.org/10.1038/s41467-024-47376-4

Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the... Read More about A facile one step route that introduces functionality to polymer powders for laser sintering.

Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., …Turyanska, L. (2024). Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T. Small, Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T.

Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics (2023)
Journal Article
Bastola, A., He, Y., Im, J., Rivers, G., Wang, F., Worsley, R., …Turyanska, L. (2023). Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Materials Today Electronics, 6, Article 100058. https://doi.org/10.1016/j.mtelec.2023.100058

Inkjet printing offers a facile route for manufacturing the next generation of electronic devices, by combining the design freedom of additive manufacturing technologies with tuneable properties of functional materials and opportunities for their int... Read More about Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics.

New structure-performance relationships for surface-based lattice heat sinks (2023)
Journal Article
Padrão, D., Hancock, D., Paterson, J., Schoofs, F., Tuck, C., & Maskery, I. (2024). New structure-performance relationships for surface-based lattice heat sinks. Applied Thermal Engineering, 236(Part B), Article 121572. https://doi.org/10.1016/j.applthermaleng.2023.121572

Heat sinks have manifold applications, from micro-electronics to nuclear fusion reactors. Their performance expectations will continue to increase in line with the power consumption and miniaturisation of technology. Additive manufacturing enables t... Read More about New structure-performance relationships for surface-based lattice heat sinks.

Additively Manufactured 3D Micro-bioelectrodes for Enhanced Bioelectrocatalytic Operation (2023)
Journal Article
Jodeiri, K., Foerster, A., Trindade, G. F., Im, J., Carballares, D., Fernández-Lafuente, R., …Tuck, C. (2023). Additively Manufactured 3D Micro-bioelectrodes for Enhanced Bioelectrocatalytic Operation. ACS Applied Materials and Interfaces, 15(11), 14914–14924. https://doi.org/10.1021/acsami.2c20262

The drive toward miniaturization of enzyme-based bioelectronics established a need for three-dimensional (3D) microstructured electrodes, which are difficult to implement using conventional manufacturing processes. Additive manufacturing coupled with... Read More about Additively Manufactured 3D Micro-bioelectrodes for Enhanced Bioelectrocatalytic Operation.

Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents (2023)
Journal Article
Rivers, G., Austin, J. S., He, Y., Thompson, A., Gilani, N., Roberts, N., …Turyanska, L. (2023). Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents. Additive Manufacturing, 66, Article 103452. https://doi.org/10.1016/j.addma.2023.103452

Development of conductive polymer ink formulations with reliable jetting stability and physical properties could offer sustainable routes for scaling-up the 3D-printing of electronics. We report a new poly(3,4-ethylenedioxythiophene) polystyrene sulp... Read More about Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents.

Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing (2023)
Journal Article
Im, J., Liu, Y., Hu, Q., Trindade, G. F., Parmenter, C., Fay, M., …Turyanska, L. (2023). Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing. Advanced Functional Materials, 33(39), Article 2211920. https://doi.org/10.1002/adfm.202211920

This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a singl... Read More about Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing.

Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals (2022)
Journal Article
Austin, J. S., Cottam, N. D., Zhang, C., Wang, F., Gosling, J. H., Nelson-Dummet, O., …Turyanska, L. (2023). Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals. Nanoscale, 15(5), 2134–2142. https://doi.org/10.1039/d2nr06429d

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs... Read More about Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals.

Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2 (2022)
Journal Article
Larder, R. R., Krumins, E., Jacob, P. L., Kortsen, K., Cavanagh, R., Jiang, L., …Howdle, S. M. (2022). Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2. Polymer Chemistry, 13(25), 3768-3779. https://doi.org/10.1039/d2py00398h

Silver nanoparticles (AgNP) are widely exploited for their effective antimicrobial activity against a range of pathogens. Their high efficacy in this regard has seen the global demand for AgNP in consumer products steadily increase in recent years, n... Read More about Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2.

Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes (2022)
Journal Article
Im, J., Trindade, G. F., Quach, T. T., Sohaib, A., Wang, F., Austin, J., …Tuck, C. (2022). Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes. ACS Applied Nano Materials, 5(5), 6708-6716. https://doi.org/10.1021/acsanm.2c00742

The development of conductive inks is required to enable additive manufacturing of electronic components and devices. A gold nanoparticle (AuNP) ink is of particular interest due to its high electrical conductivity, chemical stability, and biocompati... Read More about Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes.

Stochastic design for additive manufacture of true biomimetic populations (2022)
Journal Article
Groth, J., Magnini, M., Tuck, C., & Clare, A. (2022). Stochastic design for additive manufacture of true biomimetic populations. Additive Manufacturing, 55, Article 102739. https://doi.org/10.1016/j.addma.2022.102739

Current biomimetic designs do not incorporate naturally occurring variance. Instead, the same unit cell is repeatedly copied and pasted to create a pattern. Existing stochastic designs use the same randomness for all parameters. However, nature teach... Read More about Stochastic design for additive manufacture of true biomimetic populations.

Cracking behaviour of high-strength AA2024 aluminium alloy produced by Laser Powder Bed Fusion (2022)
Journal Article
Del Guercio, G., McCartney, D. G., Aboulkhair, N. T., Robertson, S., Maclachlan, R., Tuck, C., & Simonelli, M. (2022). Cracking behaviour of high-strength AA2024 aluminium alloy produced by Laser Powder Bed Fusion. Additive Manufacturing, 54, Article 102776. https://doi.org/10.1016/j.addma.2022.102776

Most wrought aluminium alloys of the 2000 series are difficult to manufacture by laser powder bed fusion (L-PBF) due to the formation of cracks during building. To date, the effects of processing regimes on crack formation are still not well understo... Read More about Cracking behaviour of high-strength AA2024 aluminium alloy produced by Laser Powder Bed Fusion.

3D reactive inkjet printing of bisphenol A-polycarbonate (2022)
Journal Article
Qian, Q., Kamps, J. H., Price, B., Gu, H., Wildman, R., Hague, R., …Tuck, C. (2022). 3D reactive inkjet printing of bisphenol A-polycarbonate. Additive Manufacturing, 54, Article 102745. https://doi.org/10.1016/j.addma.2022.102745

Additive Manufacturing (AM) techniques have gained extensive attention recently as they are able to directly produce 3D parts utilising a layer-by-layer manner. Inkjet printing is one such technique which can produce micron-scale features but is gene... Read More about 3D reactive inkjet printing of bisphenol A-polycarbonate.

Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers” (2022)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., …Wildman, R. D. (2022). Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers”. ACS Applied Materials and Interfaces, 14(6), 8654. https://doi.org/10.1021/acsami.2c00035

The chemical structure of the drug trandolapril has been corrected in Figure 4c. The conclusions of the work have not been affected by this correction. (Figure present).

Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation (2022)
Journal Article
Malas, A., Saleh, E., Giménez‐López, M. D. C., Rance, G. A., Helps, T., Taghavi, M., …Goodridge, R. D. (2022). Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation. Advanced Materials Technologies, 7(6), Article 2101111. https://doi.org/10.1002/admt.202101111

The layer-by-layer nature of additive manufacturing is well matched to the layer construction of stacked dielectric actuators, with inkjet printing offering a unique opportunity due to its droplet-on-demand capability, suitable for multi-material pro... Read More about Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation.

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing (2021)
Journal Article
Hu, Q., Rance, G. A., Trindade, G. F., Pervan, D., Jiang, L., Foerster, A., …Wildman, R. D. (2022). The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing. Additive Manufacturing, 51, Article 102575. https://doi.org/10.1016/j.addma.2021.102575

Two-photon polymerisation (2PP) based additive manufacturing has emerged as a powerful technology to fabricate complex three-dimensional micro- and nanoscale architectures. However, a comprehensive understanding of the effect of printing parameters o... Read More about The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing.

Five simple tools for stochastic lattice creation (2021)
Journal Article
Groth, J. H., Anderson, C., Magnini, M., Tuck, C., & Clare, A. (2022). Five simple tools for stochastic lattice creation. Additive Manufacturing, 49, Article 102488. https://doi.org/10.1016/j.addma.2021.102488

Lattices are increasingly used in engineering applications. They can reduce weight in aircraft components, increase the efficiency of heat exchangers and are used as medical implants. Typically a regular and graded lattice, where the unit cells are i... Read More about Five simple tools for stochastic lattice creation.

Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers (2021)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., …Wildman, R. D. (2021). Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. ACS Applied Materials and Interfaces, 13(33), 38969-38978. https://doi.org/10.1021/acsami.1c07850

Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue... Read More about Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers.

Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles (2021)
Journal Article
Trindade, G. F., Wang, F., Im, J., He, Y., Balogh, A., Scurr, D., …Roberts, C. J. (2021). Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles. Communications Materials, 2(1), Article 47. https://doi.org/10.1038/s43246-021-00151-0

Inkjet printing of metal nanoparticles allows for design flexibility, rapid processing and enables the 3D printing of functional electronic devices through co-deposition of multiple materials. However, the performance of printed devices, especially t... Read More about Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles.