Skip to main content

Research Repository

Advanced Search

All Outputs (24)

Place through Time: Investigating Place Identity Language within the Temporal Dimension (2023)
Journal Article
Bennett, C., & Hanks, L. (2023). Place through Time: Investigating Place Identity Language within the Temporal Dimension. Journal of Design, Planning and Aesthetics Research, 2(2), 115-140. https://doi.org/10.55755/deparch.2023.19

After an in-depth discussion on space, place, placelessness and place identity through readings from Heidegger, Norberg-Schulz, Relph and Lynch, the work concentrates on Aldo Rossi’s Pathogenic and Propelling definitions. The paper aims to use these... Read More about Place through Time: Investigating Place Identity Language within the Temporal Dimension.

Microstructural Study of Cold-Sprayed CoCrFeNiMn High Entropy Alloy (2023)
Journal Article
Akisin, C. J., Dovgyy, B., Bennett, C. J., Pham, M. S., Venturi, F., & Hussain, T. (2023). Microstructural Study of Cold-Sprayed CoCrFeNiMn High Entropy Alloy. Journal of Thermal Spray Technology, 32, 2539–2562. https://doi.org/10.1007/s11666-023-01646-7

The rapid development of cold spraying technology for additive manufacturing of engineering components has made it a viable option for developing thick deposits from high-entropy alloys (HEAs). The microstructure of cold-sprayed CoCrFeNiMn deposit wa... Read More about Microstructural Study of Cold-Sprayed CoCrFeNiMn High Entropy Alloy.

Debris expulsion as a rate determining process in fretting – The effect of slip amplitude on debris expulsion behaviour and rates (2023)
Journal Article
Zhu, T., Bennett, C. J., & Shipway, P. H. (2023). Debris expulsion as a rate determining process in fretting – The effect of slip amplitude on debris expulsion behaviour and rates. Wear, 523, Article 204818. https://doi.org/10.1016/j.wear.2023.204818

In contrast to the well-established understanding of sliding wear, recent work has clearly demonstrated that the instantaneous wear rate in fretting of metals is dependent upon the contact size due to the fact that transport of species in and out of... Read More about Debris expulsion as a rate determining process in fretting – The effect of slip amplitude on debris expulsion behaviour and rates.

On the Microstructural Evolution and Failure Mechanism in Laser Powder Bed Fusioned Ti-6Al-4V during Low Cycle Fatigue at Room and Elevated Temperatures (2022)
Journal Article
Gupta, A., Bennett, C. J., Sun, W., & Neate, N. (2022). On the Microstructural Evolution and Failure Mechanism in Laser Powder Bed Fusioned Ti-6Al-4V during Low Cycle Fatigue at Room and Elevated Temperatures. Journal of Materials Research and Technology, 21, 4299-4319. https://doi.org/10.1016/j.jmrt.2022.10.141

Microstructural features and their evolution during cyclic deformation directly impact the low cycle fatigue (LCF) life of additively manufactured Laser Powder Bed Fusion (LPBF) Ti-6Al-4V. Tensile and strain controlled LCF tests were performed at roo... Read More about On the Microstructural Evolution and Failure Mechanism in Laser Powder Bed Fusioned Ti-6Al-4V during Low Cycle Fatigue at Room and Elevated Temperatures.

An inverse analysis method for determining abradable constitutive properties (2022)
Journal Article
Lye, R., Bennett, C., Rouse, J., & Zumpano, G. (2022). An inverse analysis method for determining abradable constitutive properties. Materials Today Communications, 33, Article 104571. https://doi.org/10.1016/j.mtcomm.2022.104571

Abradable coatings enable small tip clearances within gas turbine engines to be achieved. These coatings allow blades to cut their ideal paths during engine running-in and act as a sacrificial layer during unforeseen blade-casing interactions, minimi... Read More about An inverse analysis method for determining abradable constitutive properties.

CFD Approach to the Influence of Particle Size on Erosive Wear in Coal Riser Pipes (2022)
Journal Article
Ogunlela, P. T., Giddings, D., Bennett, C., Born, S., Klaassen, M., Gennissen, I., & Farnish, R. (2022). CFD Approach to the Influence of Particle Size on Erosive Wear in Coal Riser Pipes. Journal of Fluid Flow, Heat and Mass Transfer, 9, 43-48. https://doi.org/10.11159/jffhmt.2022.006

Pneumatic conveying of finely pulverised coal particles is an important process in the steelmaking industry, used to transport coal to the blast furnace. Erosive wear caused by high velocity particles impacting on the inner wall surfaces of pneumatic... Read More about CFD Approach to the Influence of Particle Size on Erosive Wear in Coal Riser Pipes.

Numerical and Experimental Analysis of the Deformation Behavior of CoCrFeNiMn High Entropy Alloy Particles onto Various Substrates During Cold Spraying (2022)
Journal Article
Akisin, C. J., Bennett, C. J., Venturi, F., Assadi, H., & Hussain, T. (2022). Numerical and Experimental Analysis of the Deformation Behavior of CoCrFeNiMn High Entropy Alloy Particles onto Various Substrates During Cold Spraying. Journal of Thermal Spray Technology, 31(4), 1085-1111. https://doi.org/10.1007/s11666-022-01377-1

The bonding mechanisms of a wide range of metallic materials in cold spraying have been studied, mainly attributed to adiabatic shear instability (ASI) at high strain rates, whereas the impact and deformation behavior of high entropy alloys (HEAs) on... Read More about Numerical and Experimental Analysis of the Deformation Behavior of CoCrFeNiMn High Entropy Alloy Particles onto Various Substrates During Cold Spraying.

Corrigendum to ‘Understanding and modelling wear rates and mechanisms in fretting via the concept of rate-determining processes - Contact oxygenation, debris formation and debris ejection’ (Wear (2021) 486–487, (S004316482100452X), (10.1016/j.wear.2021.204066)) (2021)
Journal Article
Shipway, P. H., Kirk, A. M., Bennett, C. J., & Zhu, T. (2022). Corrigendum to ‘Understanding and modelling wear rates and mechanisms in fretting via the concept of rate-determining processes - Contact oxygenation, debris formation and debris ejection’ (Wear (2021) 486–487, (S004316482100452X), (10.1016/j.wear.2021.204066)). Wear, 488-489, Article 204161. https://doi.org/10.1016/j.wear.2021.204161

A computationally efficient method for the prediction of fretting wear in practical engineering applications (2021)
Journal Article
Kong, Y., Bennett, C. J., & Hyde, C. J. (2022). A computationally efficient method for the prediction of fretting wear in practical engineering applications. Tribology International, 165, Article 107317. https://doi.org/10.1016/j.triboint.2021.107317

A method for simulating fretting wear using the Modified Simplex Method for a contact solution has been developed. The initial separation between two contacting bodies was used as an input to solve the contact force distribution. An average cycle pre... Read More about A computationally efficient method for the prediction of fretting wear in practical engineering applications.

Understanding and modelling wear rates and mechanisms in fretting via the concept of rate-determining processes - Contact oxygenation, debris formation and debris ejection (2021)
Journal Article
Shipway, P. H., Kirk, A. M., Bennett, C. J., & Zhu, T. (2021). Understanding and modelling wear rates and mechanisms in fretting via the concept of rate-determining processes - Contact oxygenation, debris formation and debris ejection. Wear, 486-487, Article 204066. https://doi.org/10.1016/j.wear.2021.204066

A new framework which describes the role of three key processes in fretting wear of metals is proposed, with these three processes being: (i) oxygen transport into the contact; (ii) formation of oxide-based wear debris in the contact and (iii) ejecti... Read More about Understanding and modelling wear rates and mechanisms in fretting via the concept of rate-determining processes - Contact oxygenation, debris formation and debris ejection.

Interaction of displacement amplitude and frequency effects in fretting wear of a high strength steel: Impact on debris bed formation and subsurface damage (2021)
Journal Article
Kirk, A. M., Sun, W., Bennett, C. J., & Shipway, P. H. (2021). Interaction of displacement amplitude and frequency effects in fretting wear of a high strength steel: Impact on debris bed formation and subsurface damage. Wear, 482-483, Article 203981. https://doi.org/10.1016/j.wear.2021.203981

In previous work, fretting frequency has been observed to have a significant impact not only on wear rates, but also on the nature of fretting debris and the development of subsurface damage; however, while the “frequency effect” has been shown in so... Read More about Interaction of displacement amplitude and frequency effects in fretting wear of a high strength steel: Impact on debris bed formation and subsurface damage.

Signal-based analysis of the dynamic behaviour of the system in inertia friction welding and its impact on part contact evolution (2021)
Journal Article
Raimondi, L., Bennett, C. J., Gameros, A., & Axinte, D. (2021). Signal-based analysis of the dynamic behaviour of the system in inertia friction welding and its impact on part contact evolution. Mechanical Systems and Signal Processing, 161, Article 107985. https://doi.org/10.1016/j.ymssp.2021.107985

Inertia friction welding (IFW) is a process used to create joints with high geometrical accuracy and near net shape form. To cope with the complex phenomena occurring during welding, the majority of available studies have analysed the interaction of... Read More about Signal-based analysis of the dynamic behaviour of the system in inertia friction welding and its impact on part contact evolution.

A review on environmental barrier coatings: History, current state of the art and future developments (2020)
Journal Article
Tejero-Martin, D., Bennett, C., & Hussain, T. (2021). A review on environmental barrier coatings: History, current state of the art and future developments. Journal of the European Ceramic Society, 41(3), 1747-1768. https://doi.org/10.1016/j.jeurceramsoc.2020.10.057

© 2020 The Authors The increasing demand for more efficient and environmental-friendly gas turbines has driven the development of new strategies for material development. SiC/SiC ceramic matrix composites (CMCs) can fulfil the stringent requirements;... Read More about A review on environmental barrier coatings: History, current state of the art and future developments.

A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks (2020)
Journal Article
Kong, Y., Bennett, C. J., & Hyde, C. J. (2020). A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks. Materials and Design, 196, Article 109093. https://doi.org/10.1016/j.matdes.2020.109093

© 2020 The Authors Fretting fatigue can significantly reduce the life of components, leading to unexpected in-service failures. This phenomenon has been studied for over a century, with significant progress being made during the past decade. There ar... Read More about A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks.

Simulation of fatigue small crack growth in additive manufactured Ti–6Al–4V material (2020)
Journal Article
Gupta, A., Sun, W., & Bennett, C. J. (2020). Simulation of fatigue small crack growth in additive manufactured Ti–6Al–4V material. Continuum Mechanics and Thermodynamics, 32, 1745–1761. https://doi.org/10.1007/s00161-020-00878-0

© 2020, The Author(s). Additive manufacturing (AM) offers design freedom and ability to fabricate parts of complex shapes which are not often possible with the conventional methods of manufacturing. In an AM part, even with optimum build parameters,... Read More about Simulation of fatigue small crack growth in additive manufactured Ti–6Al–4V material.

A novel numerical method to predict the transient track geometry and thermomechanical effects through in-situ modification of the process parameters in Direct Energy Deposition (2019)
Journal Article
Walker, T. R., Bennett, C. J., Lee, T. L., & Clare, A. T. (2020). A novel numerical method to predict the transient track geometry and thermomechanical effects through in-situ modification of the process parameters in Direct Energy Deposition. Finite Elements in Analysis and Design, 169, https://doi.org/10.1016/j.finel.2019.103347

© 2019 Elsevier B.V. Direct Energy Deposition (DED) is being widely used to repair damaged components to increase service life and economical operation. Process parameters including laser power, traverse speed and the mass flowrate of the feedstock m... Read More about A novel numerical method to predict the transient track geometry and thermomechanical effects through in-situ modification of the process parameters in Direct Energy Deposition.

An Automated Inverse Method to Calibrate Thermal Finite Element Models for Numerical Welding Applications (2019)
Journal Article
Walker, T. R., & Bennett, C. J. (2019). An Automated Inverse Method to Calibrate Thermal Finite Element Models for Numerical Welding Applications. Journal of Manufacturing Processes, 47, 263-283. https://doi.org/10.1016/j.jmapro.2019.09.021

Numerical modelling of welding processes is often completed using a sequentially coupled FE thermo-mechanical analysis to predict both the thermal and mechanical effects induced by the process. The accuracy of the predicted residual stresses and dist... Read More about An Automated Inverse Method to Calibrate Thermal Finite Element Models for Numerical Welding Applications.

A holistic inverse approach based on a multi-objective function optimisation model to recover elastic-plastic properties of materials from the depth-sensing indentation test (2019)
Journal Article
Iracheta, O., Bennett, C., & Sun, W. (2019). A holistic inverse approach based on a multi-objective function optimisation model to recover elastic-plastic properties of materials from the depth-sensing indentation test. Journal of the Mechanics and Physics of Solids, 128, 1-20. https://doi.org/10.1016/j.jmps.2019.04.001

Recent years have seen an increased interest in the mechanical characterisation of materials via the inverse analysis of depth-sensing indentation data; however, at low-loads both the reaction forces measured by the instrument and the contact evoluti... Read More about A holistic inverse approach based on a multi-objective function optimisation model to recover elastic-plastic properties of materials from the depth-sensing indentation test.

Debris development in fretting contacts: debris particles and debris beds (2019)
Journal Article
Kirk, A., Shipway, P., Sun, W., & Bennett, C. (2019). Debris development in fretting contacts: debris particles and debris beds. Tribology International, https://doi.org/10.1016/j.triboint.2019.01.051

In this study, the formation and destruction of compacted beds of oxidized debris particles are investigated. Fretting tests of steel specimens were conducted, employing a cylinder-on-flat geometry with displacement amplitude being varied. The debris... Read More about Debris development in fretting contacts: debris particles and debris beds.

A validated analytical-numerical modelling strategy to predict residual stresses in single-track laser deposited IN718 (2018)
Journal Article
Walker, T., Bennett, C., Lee, T., & Clare, A. (2019). A validated analytical-numerical modelling strategy to predict residual stresses in single-track laser deposited IN718. International Journal of Mechanical Sciences, 151, 609-621. https://doi.org/10.1016/j.ijmecsci.2018.12.004

Direct Energy Deposition (DED) is being increasingly used to repair high value components that have been damaged in-service. The uptake of DED and laser cladding operations for repair is inhibited by accurate modelling techniques. Often the repair pr... Read More about A validated analytical-numerical modelling strategy to predict residual stresses in single-track laser deposited IN718.