Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Increasing cardiac pyruvate dehydrogenase flux during chronic hypoxia improves acute hypoxic tolerance (2018)
Journal Article
Handzlik, M., Constantin-Teodosiu, D., Greenhaff, P. L., & Cole, M. (2018). Increasing cardiac pyruvate dehydrogenase flux during chronic hypoxia improves acute hypoxic tolerance. Journal of Physiology, 596(15), 3357-3369. https://doi.org/10.1113/JP275357

The pattern of metabolic reprogramming in chronic hypoxia shares similarities with that following myocardial infarction or hypertrophy, however the response of the chronically hypoxic heart to subsequent acute injury, and the role of metabolism is no... Read More about Increasing cardiac pyruvate dehydrogenase flux during chronic hypoxia improves acute hypoxic tolerance.

The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high energy phosphate metabolism (2016)
Journal Article
Slingo, M., Cole, M., Carr, C., Curtis, M. K., Dodd, M., Giles, L., …Robbins, P. A. (in press). The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high energy phosphate metabolism. AJP - Heart and Circulatory Physiology, https://doi.org/10.1152/ajpheart.00912.2015

Hypoxia-inducible factor (HIF) appears to function as a global master regulator of cellular and systemic responses to hypoxia. HIF-pathway manipulation is of therapeutic interest, however global, systemic upregulation of HIF may have as yet unknown e... Read More about The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high energy phosphate metabolism.

Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation (2015)
Journal Article
Mansor, L. S., Mehta, K., Aksentijevic, D., Carr, C. A., Lund, T., Cole, M. A., …Heather, L. C. (2016). Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. Journal of Physiology, 594(2), 307-320. https://doi.org/10.1113/JP271242

Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chr... Read More about Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation.