Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Paternal low protein diet perturbs inter-generational metabolic homeostasis in a tissue-specific manner in mice (2022)
Journal Article
Morgan, H. L., Furse, S., Dias, I. H. K., Shabir, K., Castellanos, M., Khan, I., …Watkins, A. J. (2022). Paternal low protein diet perturbs inter-generational metabolic homeostasis in a tissue-specific manner in mice. Communications Biology, 5(1), Article 929. https://doi.org/10.1038/s42003-022-03914-8

The underlying mechanisms driving paternally-programmed metabolic disease in offspring remain poorly defined. We fed male C57BL/6 mice either a control normal protein diet (NPD; 18% protein) or an isocaloric low protein diet (LPD; 9% protein) for a m... Read More about Paternal low protein diet perturbs inter-generational metabolic homeostasis in a tissue-specific manner in mice.

CG7379 and ING1 suppress cancer cell invasion by maintaining cell–cell junction integrity (2021)
Journal Article
Rusu, A. D., Cornhill, Z. E., Coutiño, B. C., Uribe, M. C., Lourdusamy, A., Markus, Z., …Georgiou, M. (2021). CG7379 and ING1 suppress cancer cell invasion by maintaining cell–cell junction integrity. Open Biology, 11(9), Article 210077. https://doi.org/10.1098/rsob.210077

Approximately 90% of cancer-related deaths can be attributed to a tumour's ability to spread. We have identified CG7379, the fly orthologue of human ING1, as a potent invasion suppressor. ING1 is a type II tumour suppressor with well-established role... Read More about CG7379 and ING1 suppress cancer cell invasion by maintaining cell–cell junction integrity.