Skip to main content

Research Repository

Advanced Search

All Outputs (28)

The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status (2023)
Journal Article
Yu, C., Mawodza, T., Atkinson, B. S., Atkinson, J. A., Sturrock, C. J., Whalley, R., …Mooney, S. J. (2024). The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status. Rhizosphere, 29, Article 100838. https://doi.org/10.1016/j.rhisph.2023.100838

Soil structure is a crucial soil physical property that determines a soil's ability to support the growth and development of plants. Soil compaction modifies soil structure by reducing pore space between soil particles thereby leading to a denser soi... Read More about The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status.

Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype (2023)
Journal Article
Mawodza, T., Zhou, H., Atkinson, B. S., Atkinson, J. A., Sturrock, C. J., Riche, A. B., …Mooney, S. J. (2023). Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype. Rhizosphere, 27, Article 100770. https://doi.org/10.1016/j.rhisph.2023.100770

Despite extensive research over the last century concerning the application of nitrogen fertilizer to support the production of wheat (Triticum aestivum L.), our understanding on how this impacts on root growth in subsoils is limited. In this study,... Read More about Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype.

Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism (2022)
Journal Article
Fusi, R., Rosignoli, S., Lou, H., Sangiorgi, G., Bovina, R., Pattem, J. K., …Salvi, S. (2022). Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism. Proceedings of the National Academy of Sciences,

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRA... Read More about Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism.

Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms (2022)
Journal Article
Huang, G., Kilic, A., Karady, M., Zhang, J., Mehra, P., Song, X., …Pandey, B. K. (2022). Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences, 119(30), Article e2201072119. https://doi.org/10.1073/pnas.2201072119

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene... Read More about Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms.

X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil (2022)
Journal Article
Griffiths, M., Mellor, N., Sturrock, C. J., Atkinson, B. S., Johnson, J., Mairhofer, S., …Wells, D. M. (2022). X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil. Plant Phenome Journal, 5(1), Article e20036. https://doi.org/10.1002/ppj2.20036

The spatial arrangement of the root system, termed root system architecture, is important for resource acquisition as it directly affects the soil zone explored. Methods for phenotyping roots are mostly destructive, which prevents analysis of roots o... Read More about X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil.

Future roots for future soils (2021)
Journal Article
Lynch, J. P., Mooney, S. J., Strock, C. F., & Schneider, H. M. (2022). Future roots for future soils. Plant, Cell and Environment, 45(3), 620-636. https://doi.org/10.1111/pce.14213

Mechanical impedance constrains root growth in most soils. Crop cultivation changed the impedance characteristics of native soils, through topsoil erosion, loss of organic matter, disruption of soil structure and loss of biopores. Increasing adoption... Read More about Future roots for future soils.

Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation (2021)
Journal Article
George, P. B., Fidler, D. B., Van Nostrand, J. D., Atkinson, J. A., Mooney, S. J., Creer, S., …Jones, D. L. (2021). Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation. Frontiers in Microbiology, 12, 1-16. https://doi.org/10.3389/fmicb.2021.735022

Soil organic matter is composed of a variety of carbon (C) forms. However, not all forms are equally accessible to soil microorganisms. Deprivation of C inputs will cause changes in the physical and microbial community structures of soils; yet the tr... Read More about Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation.

Microbial Metal Resistance within Structured Environments Is Inversely Related to Environmental Pore Size (2021)
Journal Article
Harvey, H. J., Mitzakoff, A. M., Wildman, R. D., Mooney, S. J., & Avery, S. V. (2021). Microbial Metal Resistance within Structured Environments Is Inversely Related to Environmental Pore Size. Applied and Environmental Microbiology, 87(20), Article e01005-21. https://doi.org/10.1128/AEM.01005-21

The physical environments in which microorganisms naturally reside rarely have homogeneous structure, and changes in their porous architecture may have effects on microbial activities that are not typically captured in conventional laboratory studies... Read More about Microbial Metal Resistance within Structured Environments Is Inversely Related to Environmental Pore Size.

Plant roots sense soil compaction through restricted ethylene diffusion (2021)
Journal Article
Pandey, B. K., Huang, G., Bhosale, R., Hartman, S., Sturrock, C. J., Jose, L., …Bennett, M. J. (2021). Plant roots sense soil compaction through restricted ethylene diffusion. Science, 371(6526), 276-280. https://doi.org/10.1126/science.abf3013

© 2021 The Authors, some rights reserved. Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root gro... Read More about Plant roots sense soil compaction through restricted ethylene diffusion.

Soil aggregates by design: Manufactured aggregates with defined microbial composition for interrogating microbial activities in soil microhabitats (2020)
Journal Article
Harvey, H. J., Wildman, R. D., Mooney, S. J., & Avery, S. V. (2020). Soil aggregates by design: Manufactured aggregates with defined microbial composition for interrogating microbial activities in soil microhabitats. Soil Biology and Biochemistry, 148, https://doi.org/10.1016/j.soilbio.2020.107870

Differences in the structure of microbial communities are reported to exist between the inside and outside of soil aggregates, but the impacts of soil aggregation on microbial activity in soils, essential for soil health, have proven difficult to stu... Read More about Soil aggregates by design: Manufactured aggregates with defined microbial composition for interrogating microbial activities in soil microhabitats.

A comparison between water uptake and root length density in winter wheat: effects of root density and rhizosphere properties (2020)
Journal Article
Zhang, X. .., Whalley, P. A., Ashton, R. W., Evans, J., Hawkesford, M. J., Griffiths, S., …Whalley, W. R. (2020). A comparison between water uptake and root length density in winter wheat: effects of root density and rhizosphere properties. Plant and Soil, 451, 345-356. https://doi.org/10.1007/s11104-020-04530-3

© 2020, The Author(s). Background and aims: We aim to quantify the variation in root distribution in a set of 35 experimental wheat lines. We also compared the effect of variation in hydraulic properties of the rhizosphere on water uptake by roots. M... Read More about A comparison between water uptake and root length density in winter wheat: effects of root density and rhizosphere properties.

Ecosystem services for intensification of agriculture, with emphasis on increased nitrogen ecological use efficiency (2020)
Journal Article
Sena, V. G., de Moura, E. G., Macedo, V. R., Aguiar, A. C., Price, A. H., Mooney, S. J., & Calonego, J. C. (2020). Ecosystem services for intensification of agriculture, with emphasis on increased nitrogen ecological use efficiency. Ecosphere, 11(2), https://doi.org/10.1002/ecs2.3028

© 2020 The Authors. In weathered tropical soil, low nutrient use efficiency can lead to agricultural systems becoming unsustainable. Therefore, tropical agriculture is highly dependent on ecosystem services, such as nutrient recycling and carbon sequ... Read More about Ecosystem services for intensification of agriculture, with emphasis on increased nitrogen ecological use efficiency.

Soil strength influences wheat root interactions with soil macropores (2019)
Journal Article
Atkinson, J. A., Hawkesford, M. J., Whalley, W. R., Zhou, H., & Mooney, S. J. (2020). Soil strength influences wheat root interactions with soil macropores. Plant, Cell and Environment, 43(1), 235-245. https://doi.org/10.1111/pce.13659

Deep rooting is critical for access to water and nutrients found in subsoil. However, damage to soil structure and the natural increase in soil strength with depth, often impedes root penetration. Evidence suggests that roots use macropores (soil cav... Read More about Soil strength influences wheat root interactions with soil macropores.

Multiple abiotic stress, nitrate availability and the growth of wheat (2019)
Journal Article
Ge, Y., Hawkesford, M., Rosolem, C., Mooney, S., Ashton, R., Evans, J., & Whalley, W. (2019). Multiple abiotic stress, nitrate availability and the growth of wheat. Soil and Tillage Research, 191, 171-184. https://doi.org/10.1016/j.still.2019.04.005

In the field, wheat experiences a combination of physical and nutrient stresses. There has been a tendency to study root impedance and water stress in separation and less is known about how they might interact. In this study, we investigated the effe... Read More about Multiple abiotic stress, nitrate availability and the growth of wheat.

Interaction between contrasting rice genotypes and soil physical conditions induced by hydraulic stresses typical of alternate wetting and drying irrigation of soil (2018)
Journal Article
Fang, H., Zhou, H., Norton, G. J., Price, A. H., Raffan, A. C., Mooney, S. J., …Hallett, P. D. (2018). Interaction between contrasting rice genotypes and soil physical conditions induced by hydraulic stresses typical of alternate wetting and drying irrigation of soil. Plant and Soil, 430(1-2), 233-243. https://doi.org/10.1007/s11104-018-3715-5

© 2018, The Author(s). Background and aims: Alternate wetting and drying (AWD) saves water in paddy rice production but could influence soil physical conditions and root growth. This study investigated the interaction between contrasting rice genotyp... Read More about Interaction between contrasting rice genotypes and soil physical conditions induced by hydraulic stresses typical of alternate wetting and drying irrigation of soil.

Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)) (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)). Nature Communications, 9(1), Article 1810. https://doi.org/10.1038/s41467-018-04280-y

The original version of this Article omitted the following from the Acknowledgements:'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-03850-4

Root traits such as root angle and hair length influence resource acquisition particularly for immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by disrupting the OsAUX1 auxin influx transporter gene in an effort... Read More about Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate.

Soil seal development under simulated rainfall: structural, physical and hydrological dynamics (2017)
Journal Article
Armenise, E., Simmons, R. W., Ahn, S., Garbout, A., Doen, S. H., Mooney, S. J., …Ritz, K. (2018). Soil seal development under simulated rainfall: structural, physical and hydrological dynamics. Journal of Hydrology, 556, https://doi.org/10.1016/j.jhydrol.2017.10.073

This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/... Read More about Soil seal development under simulated rainfall: structural, physical and hydrological dynamics.

Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes (2017)
Journal Article
Fitters, T. F., Bussell, J. S., Mooney, S. J., & Sparkes, D. L. (2017). Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes. Environmental and Experimental Botany, 144, https://doi.org/10.1016/j.envexpbot.2017.10.001

Sugar beet yield worldwide is substantially reduced as a result of drought stress. Water uptake may be limited by the plant (e.g. low root density) or by soil physical constraints. An experiment was conducted to assess the ability of sugar beet to pr... Read More about Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes.

Shaping 3D root system architecture (2017)
Journal Article
Morris, E. C., Griffiths, M., Golebiowska, A., Mairhofer, S., Burr-Hersey, J., Goh, T., …Bennett, M. J. (2017). Shaping 3D root system architecture. Current Biology, 27(17), R919-R930. https://doi.org/10.1016/j.cub.2017.06.043

Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil si... Read More about Shaping 3D root system architecture.