Skip to main content

Research Repository

Advanced Search

All Outputs (17)

ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana (2023)
Journal Article
Zubrycka, A., Dambire, C., Dalle Carbonare, L., Sharma, G., Boeckx, T., Swarup, K., …Holdsworth, M. J. (2023). ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana. Nature Communications, 14, Article 4665. https://doi.org/10.1038/s41467-023-40366-y

Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPON... Read More about ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana.

Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism (2022)
Journal Article
Fusi, R., Rosignoli, S., Lou, H., Sangiorgi, G., Bovina, R., Pattem, J. K., …Salvi, S. (2022). Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism. Proceedings of the National Academy of Sciences,

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRA... Read More about Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., …WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.

Arabidopsis antibody resources for functional studies in plants (2020)
Journal Article
Oh, J., Wilson, M., Hill, K., Leftley, N., Hodgman, C., Bennett, M. J., & Swarup, R. (2020). Arabidopsis antibody resources for functional studies in plants. Scientific Reports, 10(1), Article 21945. https://doi.org/10.1038/s41598-020-78689-1

© 2020, The Author(s). Here we report creation of a unique and a very valuable resource for Plant Scientific community worldwide. In this era of post-genomics and modelling of multi-cellular systems using an integrative systems biology approach, bett... Read More about Arabidopsis antibody resources for functional studies in plants.

Developmental roles of AUX1/LAX auxin influx carriers in plants (2019)
Journal Article
Swarup, R., & Bhosale, R. (2019). Developmental roles of AUX1/LAX auxin influx carriers in plants. Frontiers in Plant Science, 10, https://doi.org/10.3389/fpls.2019.01306

Plant hormone auxin regulates several aspects of plant growth and development. Auxin is predominantly synthesized in the shoot apex and developing leaf primordia and from there it is transported to the target tissues e.g. roots. Auxin transport is po... Read More about Developmental roles of AUX1/LAX auxin influx carriers in plants.

Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat (2019)
Other
Griffiths, M., Atkinson, J. A., Gardiner, L., Swarup, R., Pound, M. P., Wilson, M. H., …Wells, D. M. (2019). Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource dependent response in wheat (Triticum aestivum L.... Read More about Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat.

Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)) (2018)
Journal Article
Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F. H., Hartmann, A., Traini, R., …Swarup, R. (2018). Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)). Nature Communications, 9(1), 1818. https://doi.org/10.1038/s41467-018-04281-x

The original version of this Article omitted the following from the Acknowledgements: 'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)) (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)). Nature Communications, 9(1), Article 1810. https://doi.org/10.1038/s41467-018-04280-y

The original version of this Article omitted the following from the Acknowledgements:'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (2018)
Journal Article
Giehl, R. F. H., Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F., Hartmann, A., …Swarup, R. (2018). A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 9(1), 1-9. https://doi.org/10.1038/s41467-018-03851-3

Phosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile. Here we report that auxin plays a critical role promoting root... Read More about A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate.

Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-03850-4

Root traits such as root angle and hair length influence resource acquisition particularly for immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by disrupting the OsAUX1 auxin influx transporter gene in an effort... Read More about Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate.

SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice (2017)
Journal Article
Henry, S., Dievart, A., Divol, F., Pauluzzi, G., Meynard, D., Swarup, R., …Périn, C. (2017). SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Developmental Biology, 425(1), 1-7. https://doi.org/10.1016/j.ydbio.2017.03.001

The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr m... Read More about SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.

One gene, many proteins: mapping cell-specific alternative splicing in plants (2016)
Journal Article
Swarup, R., Crespi, M., & Bennett, M. J. (2016). One gene, many proteins: mapping cell-specific alternative splicing in plants. Developmental Cell, 39(4), 383-385. https://doi.org/10.1016/j.devcel.2016.11.002

Pre-mRNA alternative splicing (AS) generates protein variants from a single gene that can create novel regulatory opportunities. In this issue of Developmental Cell, Li et al. (2016) present a high-resolution expression map of AS events in Arabidopsi... Read More about One gene, many proteins: mapping cell-specific alternative splicing in plants.

Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root (2016)
Journal Article
Street, I. H., Mathews, D. E., Yamburkenko, M. V., Sorooshzadeh, A., John, R. T., Swarup, R., …Schaller, G. E. (2016). Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development, 143(21), 3982-3993. https://doi.org/10.1242/dev.132035

Hormonal interactions are critical for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here we define key mechanistic elements in a regulatory network by which cytokinin inh... Read More about Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root.

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis (2016)
Journal Article
Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., …Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. https://doi.org/10.1073/pnas.1604375113

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control t... Read More about Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis.

Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3 (2016)
Journal Article
Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., …Bennett, M. J. (2016). Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 143(18), 3340-3349. https://doi.org/10.1242/dev.136283

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-induc... Read More about Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

Plant embryogenesis requires AUX/LAX-mediated auxin influx (2015)
Journal Article
Robert, H. S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., …Friml, J. (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development, 142(4), 702-711. https://doi.org/10.1242/dev.115832

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during emb... Read More about Plant embryogenesis requires AUX/LAX-mediated auxin influx.

Systems Analysis of Auxin Transport in the Arabidopsis Root Apex (2014)
Journal Article
Band, L. R., Wells, D. M., Fozard, J. A., Ghetiu, T., French, A. P., Pound, M. P., …Bennett, M. J. (2014). Systems Analysis of Auxin Transport in the Arabidopsis Root Apex. Plant Cell, 26(3), 862-875. https://doi.org/10.1105/tpc.113.119495

Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the... Read More about Systems Analysis of Auxin Transport in the Arabidopsis Root Apex.