Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype (2023)
Journal Article
Mawodza, T., Zhou, H., Atkinson, B. S., Atkinson, J. A., Sturrock, C. J., Riche, A. B., …Mooney, S. J. (2023). Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype. Rhizosphere, 27, Article 100770. https://doi.org/10.1016/j.rhisph.2023.100770

Despite extensive research over the last century concerning the application of nitrogen fertilizer to support the production of wheat (Triticum aestivum L.), our understanding on how this impacts on root growth in subsoils is limited. In this study,... Read More about Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype.

Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism (2022)
Journal Article
Fusi, R., Rosignoli, S., Lou, H., Sangiorgi, G., Bovina, R., Pattem, J. K., …Salvi, S. (2022). Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism. Proceedings of the National Academy of Sciences,

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRA... Read More about Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism.

X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil (2022)
Journal Article
Griffiths, M., Mellor, N., Sturrock, C. J., Atkinson, B. S., Johnson, J., Mairhofer, S., …Wells, D. M. (2022). X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil. Plant Phenome Journal, 5(1), Article e20036. https://doi.org/10.1002/ppj2.20036

The spatial arrangement of the root system, termed root system architecture, is important for resource acquisition as it directly affects the soil zone explored. Methods for phenotyping roots are mostly destructive, which prevents analysis of roots o... Read More about X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil.

Emergent Protective Organogenesis in Date Palms: A Morpho-devo-dynamic Adaptive Strategy During Early Development (2019)
Journal Article
Xiao, T., Raygoza, A. A., Pérez, J. C., Kirschner, G., Deng, Y., Atkinson, B., …Blilou, I. (2019). Emergent Protective Organogenesis in Date Palms: A Morpho-devo-dynamic Adaptive Strategy During Early Development. Plant Cell, 31(8), 1751-1766. https://doi.org/10.1105/tpc.19.00008

Desert plants have developed mechanisms for adapting to hostile desert conditions, yet these mechanisms remain poorly understood. Here, we describe two unique modes used by desert date palms (Phoenix dactylifera L.) to protect their meristematic tiss... Read More about Emergent Protective Organogenesis in Date Palms: A Morpho-devo-dynamic Adaptive Strategy During Early Development.

Shaping 3D root system architecture (2017)
Journal Article
Morris, E. C., Griffiths, M., Golebiowska, A., Mairhofer, S., Burr-Hersey, J., Goh, T., …Bennett, M. J. (2017). Shaping 3D root system architecture. Current Biology, 27(17), R919-R930. https://doi.org/10.1016/j.cub.2017.06.043

Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil si... Read More about Shaping 3D root system architecture.