Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Subnanometer-Wide Indium Selenide Nanoribbons (2023)
Journal Article
Cull, W. J., Skowron, S. T., Hayter, R., Stoppiello, C. T., Rance, G. A., Biskupek, J., …Khlobystov, A. N. (2023). Subnanometer-Wide Indium Selenide Nanoribbons. ACS Nano, 17(6), 6062-6072. https://doi.org/10.1021/acsnano.3c00670

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In th... Read More about Subnanometer-Wide Indium Selenide Nanoribbons.

Resonant inelastic X-ray scattering of a Ru photosensitizer: Insights from individual ligands to the electronic structure of the complete molecule (2019)
Journal Article
Temperton, R. H., Skowron, S. T., Handrup, K., Gibson, A. J., Nicolaou, A., Jaouen, N., …O’Shea, J. N. (2019). Resonant inelastic X-ray scattering of a Ru photosensitizer: Insights from individual ligands to the electronic structure of the complete molecule. Journal of Chemical Physics, 151(7), 1-9. https://doi.org/10.1063/1.5114692

N 1s Resonant Inelastic X-ray Scattering (RIXS) was used to probe the molecular electronic structure of the ruthenium photosensitizer complex cis-bis(isothiocyanato) bis(2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium(II), known as “N3.” In order to int... Read More about Resonant inelastic X-ray scattering of a Ru photosensitizer: Insights from individual ligands to the electronic structure of the complete molecule.