Skip to main content

Research Repository

Advanced Search

All Outputs (20)

Disorder enhanced quantum many-body scars in Hilbert hypercubes (2021)
Journal Article
van Voorden, B., Marcuzzi, M., Schoutens, K., & Minář, J. (2021). Disorder enhanced quantum many-body scars in Hilbert hypercubes. Physical Review B, 103(22), Article L220301. https://doi.org/10.1103/physrevb.103.l220301

We consider a model arising in facilitated Rydberg chains with positional disorder which features a Hilbert space with the topology of a d-dimensional hypercube. This allows for a straightforward interpretation of the many-body dynamics in terms of a... Read More about Disorder enhanced quantum many-body scars in Hilbert hypercubes.

Signatures of Associative Memory Behavior in a Multimode Dicke Model (2020)
Journal Article
Fiorelli, E., Marcuzzi, M., Rotondo, P., Carollo, F., & Lesanovsky, I. (2020). Signatures of Associative Memory Behavior in a Multimode Dicke Model. Physical Review Letters, 125(7), https://doi.org/10.1103/physrevlett.125.070604

© 2020 American Physical Society. Dicke-like models can describe a variety of physical systems, such as atoms in a cavity or vibrating ion chains. In equilibrium these systems often feature a radical change in their behavior when switching from weak... Read More about Signatures of Associative Memory Behavior in a Multimode Dicke Model.

Dynamics of strongly coupled disordered dissipative spin-boson systems (2020)
Journal Article
Fiorelli, E., Rotondo, P., Carollo, F., Marcuzzi, M., & Lesanovsky, I. (2020). Dynamics of strongly coupled disordered dissipative spin-boson systems. Physical Review Research, 2(1), https://doi.org/10.1103/physrevresearch.2.013198

Spin-boson Hamiltonians are an effective description for numerous quantum few-and many-body systems such as atoms coupled to cavity modes, quantum electrodynamics in circuits and trapped ion systems. While reaching the limit of strong coupling is pos... Read More about Dynamics of strongly coupled disordered dissipative spin-boson systems.

Localization in spin chains with facilitation constraints and disordered interactions (2019)
Journal Article
Ostmann, M., Marcuzzi, M., Garrahan, J. P., & Lesanovsky, I. (2019). Localization in spin chains with facilitation constraints and disordered interactions. Physical Review A, 99(6), 1-7. https://doi.org/10.1103/PhysRevA.99.060101

Quantum many-body systems with kinetic constraints exhibit intriguing relaxation dynamics. Recent experimental progress in the field of cold atomic gases offers a handle for probing collective behavior of such systems, in particular for understanding... Read More about Localization in spin chains with facilitation constraints and disordered interactions.

Synthetic lattices, flat bands and localization in Rydberg quantum simulators (2019)
Journal Article
Ostmann, M., Marcuzzi, M., Minář, J., & Lesanovsky, I. (2019). Synthetic lattices, flat bands and localization in Rydberg quantum simulators. Quantum Science and Technology, 4(2), 1-8. https://doi.org/10.1088/2058-9565/aaf29d

© 2019 IOP Publishing Ltd. The most recent manifestation of cold Rydberg atom quantum simulators that employs tailored optical tweezer arrays enables the study of many-body dynamics under so-called facilitation conditions. We show how the facilitatio... Read More about Synthetic lattices, flat bands and localization in Rydberg quantum simulators.

Singularities in large deviations of work in quantum quenches (2018)
Journal Article
Rotondo, P., Minář, J., Garrahan, J. P., Lesanovsky, I., & Marcuzzi, M. (2018). Singularities in large deviations of work in quantum quenches. Physical Review B, 98(18), Article 184303. https://doi.org/10.1103/physrevb.98.184303

We investigate large deviations of the work performed in a quantum quench across two different phases separated by a quantum critical point, using as an example the Dicke model quenched from its superradiant to its normal phase. We extract the distri... Read More about Singularities in large deviations of work in quantum quenches.

A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour (2018)
Journal Article
Wade, C., Marcuzzi, M., Levi, E., Kondo, J., Lesanovsky, I., Adams, C., & Weatherill, K. (2018). A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour. Nature Communications, 9, 1-7. https://doi.org/10.1038/s41467-018-05597-4

There are few demonstrated examples of phase transitions that may be driven directly by terahertz frequency electric fields, and those that are known require field strengths exceeding 1 MV cm?1. Here we report a non-equilibrium phase transition drive... Read More about A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour.

Open quantum generalisation of Hopfield neural networks (2018)
Journal Article
Rotondo, P., Marcuzzi, M., Garrahan, J. P., Lesanovsky, I., & Müller, M. (2018). Open quantum generalisation of Hopfield neural networks. Journal of Physics A: Mathematical and Theoretical, 51(11), Article 115301. https://doi.org/10.1088/1751-8121/aaabcb

We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent... Read More about Open quantum generalisation of Hopfield neural networks.

Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms (2017)
Journal Article
Ostmann, M., Minář, J., Marcuzzi, M., Levi, E., & Lesanovsky, I. (2017). Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms. New Journal of Physics, 19(12), https://doi.org/10.1088/1367-2630/aa983e

Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss a... Read More about Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms.

Experimental signatures of an absorbing-state phase transition in an open driven many-body quantum system (2017)
Journal Article
Gutiérrez, R., Simonelli, C., Archimi, M., Castellucci, F., Arimondo, E., Ciampini, D., …Morsch, O. (2017). Experimental signatures of an absorbing-state phase transition in an open driven many-body quantum system. Physical Review A, 96(4), Article 041602(R). https://doi.org/10.1103/PhysRevA.96.041602

Understanding and probing phase transitions in non-equilibrium systems is an ongoing challenge in physics. A particular instance are phase transitions that occur between a non-fluctuating absorbing phase, e.g., an extinct population, and one in which... Read More about Experimental signatures of an absorbing-state phase transition in an open driven many-body quantum system.

Epidemic dynamics in open quantum spin systems (2017)
Journal Article
Perez-Espigares, C., Marcuzzi, M., Gutierrez, R., & Lesanovsky, I. (2017). Epidemic dynamics in open quantum spin systems. Physical Review Letters, 119(14), 1-6. https://doi.org/10.1103/PhysRevLett.119.140401

We explore the non-equilibrium evolution and stationary states of an open many-body system which displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting... Read More about Epidemic dynamics in open quantum spin systems.

Facilitation dynamics and localization phenomena in Rydberg lattice gases with position disorder (2017)
Journal Article
Marcuzzi, M., Minář, J., Barredo, D., Léséleuc, S. D., Labuhn, H., Lahaye, T., …Lesanovsky, I. (2017). Facilitation dynamics and localization phenomena in Rydberg lattice gases with position disorder. Physical Review Letters, 118(6-10), Article 063606. https://doi.org/10.1103/PhysRevLett.118.063606

We explore the dynamics of Rydberg excitations in an optical tweezer array under anti-blockade (or facilitation) conditions. Due to the finite temperature the atomic positions are randomly spread, an effect that leads to quenched correlated disorder... Read More about Facilitation dynamics and localization phenomena in Rydberg lattice gases with position disorder.

Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems (2017)
Journal Article
Buchhold, M., Everest, B., Marcuzzi, M., Lesanovsky, I., & Diehl, S. (2017). Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems. Physical Review B, 95, https://doi.org/10.1103/PhysRevB.95.014308

Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has p... Read More about Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems.

Prethermalization from a low-density Holstein-Primakoff expansion (2016)
Journal Article
Marcuzzi, M., Marino, J., Gambassi, A., & Silva, A. (2016). Prethermalization from a low-density Holstein-Primakoff expansion. Physical Review B, 94, Article 214304. https://doi.org/10.1103/PhysRevB.94.214304

We consider the non-equilibrium dynamics arising after a quench of the transverse magnetic field of a quantum Ising chain, together with the sudden switch-on of a long-range interaction term. The dynamics after the quantum quench is mapped onto a ful... Read More about Prethermalization from a low-density Holstein-Primakoff expansion.

Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems (2016)
Journal Article
Everest, B., Marcuzzi, M., Garrahan, J. P., & Lesanovsky, I. (2016). Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems. Physical Review E, 94(5), Article 052108. https://doi.org/10.1103/physreve.94.052108

Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolutio... Read More about Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems.

Absorbing state phase transition with competing quantum and classical fluctuations (2016)
Journal Article
Marcuzzi, M., Buchhold, M., Diehl, S., & Lesanovsky, I. (2016). Absorbing state phase transition with competing quantum and classical fluctuations. Physical Review Letters, 116(24), https://doi.org/10.1103/PhysRevLett.116.245701

Stochastic processes with absorbing states feature examples of non-equilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these non-equilibrium system... Read More about Absorbing state phase transition with competing quantum and classical fluctuations.

Non-equilibrium universality in the dynamics of dissipative cold atomic gases (2015)
Journal Article
Marcuzzi, M., Levi, E., Li, W., Garrahan, J. P., Olmos, B., & Lesanovsky, I. (2015). Non-equilibrium universality in the dynamics of dissipative cold atomic gases. New Journal of Physics, 17(July), Article 72003. https://doi.org/10.1088/1367-2630/17/7/072003

The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established conce... Read More about Non-equilibrium universality in the dynamics of dissipative cold atomic gases.

Universal nonequilibrium properties of dissipative rydberg gases (2014)
Journal Article
Marcuzzi, M., Levi, E., Diehl, S., Garrahan, J. P., & Lesanovsky, I. (2014). Universal nonequilibrium properties of dissipative rydberg gases. Physical Review Letters, 113(21), Article 210401. https://doi.org/10.1103/PhysRevLett.113.210401

© 2014 American Physical Society. We investigate the out-of-equilibrium behavior of a dissipative gas of Rydberg atoms that features a dynamical transition between two stationary states characterized by different excitation densities. We determine th... Read More about Universal nonequilibrium properties of dissipative rydberg gases.

Effective dynamics of strongly dissipative Rydberg gases (2014)
Journal Article
Marcuzzi, M., Schick, J., Olmos, B., & Lesanovsky, I. (2014). Effective dynamics of strongly dissipative Rydberg gases. Journal of Physics A: Mathematical and Theoretical, 47(48), Article 482001. https://doi.org/10.1088/1751-8113/47/48/482001

We investigate the evolution of interacting Rydberg gases in the limit of strong noise and dissipation. Starting from a description in terms of a Markovian quantum master equation we derive effective equations of motion that govern the dynamics on a... Read More about Effective dynamics of strongly dissipative Rydberg gases.

Critical relaxation and the combined effects of spatial and temporal boundaries (2014)
Journal Article
Marcuzzi, M., & Gambassi, A. (2014). Critical relaxation and the combined effects of spatial and temporal boundaries. Condensed Matter Physics, 17(3), Article 33603. https://doi.org/10.5488/CMP.17.33603

We revisit here the problem of the collective non-equilibrium dynamics of a classical statistical system at a critical point and in the presence of surfaces. The effects of breaking separately space- and time-translational invariance are well underst... Read More about Critical relaxation and the combined effects of spatial and temporal boundaries.