Skip to main content

Research Repository

Advanced Search

All Outputs (3)

A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications (2022)
Journal Article
Pearcy, N., Garavaglia, M., Millat, T., Gilbert, J. P., Song, Y., Hartman, H., …Minton, N. P. (2022). A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications. PLoS Computational Biology, 18(5), Article e1010106. https://doi.org/10.1371/journal.pcbi.1010106

Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly prom... Read More about A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications.

Gsmodutils: a python based framework for test-driven genome scale metabolic model development (2019)
Journal Article
Gilbert, J., Pearcy, N., Norman, R., Millat, T., Winzer, K., King, J., …Twycross, J. (2019). Gsmodutils: a python based framework for test-driven genome scale metabolic model development. Bioinformatics, 35(18), 3397-3403. https://doi.org/10.1093/bioinformatics/btz088

© 2019 The Author(s) 2019. Published by Oxford University Press. Motivation: Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-stat... Read More about Gsmodutils: a python based framework for test-driven genome scale metabolic model development.

Gsmodutils: A python based framework for test-driven genome scale metabolic model development (2018)
Other
Gilbert, J. P., Pearcy, N., Norman, R., Millat, T., Winzer, K., King, J., …Twycross, J. (2018). Gsmodutils: A python based framework for test-driven genome scale metabolic model development

Motivation Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-state behaviour. Constraints based models of this form can include tho... Read More about Gsmodutils: A python based framework for test-driven genome scale metabolic model development.