Skip to main content

Research Repository

Advanced Search

All Outputs (7)

A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications (2022)
Journal Article
Pearcy, N., Garavaglia, M., Millat, T., Gilbert, J. P., Song, Y., Hartman, H., …Minton, N. P. (2022). A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications. PLoS Computational Biology, 18(5), Article e1010106. https://doi.org/10.1371/journal.pcbi.1010106

Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly prom... Read More about A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications.

Using singular perturbation theory to determine kinetic parameters in a non-standard coupled enzyme assay (2020)
Journal Article
Dalwadi, M. P., Orol, D., Walter, F., Minton, N. P., King, J. R., & Kovács, K. (2020). Using singular perturbation theory to determine kinetic parameters in a non-standard coupled enzyme assay. Journal of Mathematical Biology, 81(2), 649-690. https://doi.org/10.1007/s00285-020-01524-8

We investigate how to characterize the kinetic parameters of an aminotransaminase using a non-standard coupled (or auxiliary) enzyme assay, where the peculiarity arises for two reasons. First, one of the products of the auxiliary enzyme is a substrat... Read More about Using singular perturbation theory to determine kinetic parameters in a non-standard coupled enzyme assay.

Gsmodutils: a python based framework for test-driven genome scale metabolic model development (2019)
Journal Article
Gilbert, J., Pearcy, N., Norman, R., Millat, T., Winzer, K., King, J., …Twycross, J. (2019). Gsmodutils: a python based framework for test-driven genome scale metabolic model development. Bioinformatics, 35(18), 3397-3403. https://doi.org/10.1093/bioinformatics/btz088

© 2019 The Author(s) 2019. Published by Oxford University Press. Motivation: Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-stat... Read More about Gsmodutils: a python based framework for test-driven genome scale metabolic model development.

Gsmodutils: A python based framework for test-driven genome scale metabolic model development (2018)
Other
Gilbert, J. P., Pearcy, N., Norman, R., Millat, T., Winzer, K., King, J., …Twycross, J. (2018). Gsmodutils: A python based framework for test-driven genome scale metabolic model development

Motivation Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-state behaviour. Constraints based models of this form can include tho... Read More about Gsmodutils: A python based framework for test-driven genome scale metabolic model development.

Upscaling Diffusion Through First-Order Volumetric Sinks: A Homogenization of Bacterial Nutrient Uptake (2018)
Journal Article
Dalwadi, M. P., Wang, Y., King, J. R., & Minton, N. P. (2018). Upscaling Diffusion Through First-Order Volumetric Sinks: A Homogenization of Bacterial Nutrient Uptake. SIAM Journal on Applied Mathematics, 78(3), 1300-1329. https://doi.org/10.1137/17m1138625

In mathematical models that include nutrient delivery to bacteria, it is prohibitively expensive to include a pointwise nutrient uptake within small bacterial regions over bioreactor length-scales, and so such models often impose an effective uptake... Read More about Upscaling Diffusion Through First-Order Volumetric Sinks: A Homogenization of Bacterial Nutrient Uptake.

Applying asymptotic methods to synthetic biology: modelling the reaction kinetics of the mevalonate pathway (2017)
Journal Article
Dalwadi, M. P., Garavaglia, M., Webb, J. P., King, J. R., & Minton, N. P. (2018). Applying asymptotic methods to synthetic biology: modelling the reaction kinetics of the mevalonate pathway. Journal of Theoretical Biology, 439, https://doi.org/10.1016/j.jtbi.2017.11.022

The mevalonate pathway is normally found in eukaryotes, and allows for the production of isoprenoids, a useful class of organic compounds. This pathway has been successfully introduced to Escherichia coli, enabling a biosynthetic production route for... Read More about Applying asymptotic methods to synthetic biology: modelling the reaction kinetics of the mevalonate pathway.

Multi-timescale analysis of a metabolic network in synthetic biology: a kinetic model for 3-hydroxypropionic acid production via beta-alanine (2017)
Journal Article
Dalwadi, M. P., King, J. R., & Minton, N. P. (2018). Multi-timescale analysis of a metabolic network in synthetic biology: a kinetic model for 3-hydroxypropionic acid production via beta-alanine. Journal of Mathematical Biology, 77(1), 165-199. https://doi.org/10.1007/s00285-017-1189-3

A biosustainable production route for 3-hydroxypropionic acid (3HP), an important platform chemical, would allow 3HP to be produced without using fossil fuels. We are interested in investigating a potential biochemical route to 3HP from pyruvate thro... Read More about Multi-timescale analysis of a metabolic network in synthetic biology: a kinetic model for 3-hydroxypropionic acid production via beta-alanine.