Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Ground and Excited States of Bis?4?Methoxybenzyl?Substituted Diketopyrrolopyrroles: Spectroscopic and Electrochemical Studies (2019)
Journal Article
Murphy, A. S., Killalea, C. E., Humphreys, J., Hume, P. A., Cliffe, M. J., Murray, G. J., …Amabilino, D. B. (2019). Ground and Excited States of Bis‐4‐Methoxybenzyl‐Substituted Diketopyrrolopyrroles: Spectroscopic and Electrochemical Studies. ChemPlusChem, 84(9), 1413-1422. https://doi.org/10.1002/cplu.201900286

A series of symmetrically bis?4?methoxybenzyl (4MB) N?substituted 1,4?diketopyrrolo[3,4?c]pyrrole (DPP) derivatives have been synthesized. The 4MB unit makes the DPP core soluble, and shows subtle modification of up to 0.2?eV in ground and excited st... Read More about Ground and Excited States of Bis?4?Methoxybenzyl?Substituted Diketopyrrolopyrroles: Spectroscopic and Electrochemical Studies.

Monitoring the Formation and Reactivity of Organometallic Alkane and Fluoroalkane Complexes with Silanes and Xe Using Time-Resolved X-ray Absorption Fine Structure Spectroscopy (2019)
Journal Article
Bartlett, S. A., Besley, N. A., Dent, A. J., Diaz-Moreno, S., Evans, J., Hamilton, M. L., …George, M. W. (2019). Monitoring the Formation and Reactivity of Organometallic Alkane and Fluoroalkane Complexes with Silanes and Xe Using Time-Resolved X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 141(29), 11471-11480. https://doi.org/10.1021/jacs.8b13848

Complexes with weakly coordinating ligands are often formed in chemical reactions and can play key roles in determining the reactivity, particularly in catalytic reactions. Using time-resolved X-ray absorption fine structure (XAFS) spectroscopy in co... Read More about Monitoring the Formation and Reactivity of Organometallic Alkane and Fluoroalkane Complexes with Silanes and Xe Using Time-Resolved X-ray Absorption Fine Structure Spectroscopy.

A Highly Active Bidentate Magnesium Catalyst for Amine‐Borane Dehydrocoupling: Kinetic and Mechanistic Studies (2019)
Journal Article
Ried, A., Taylor, L., Geer, A., Williams, H., Lewis, W., Blake, A., & Kays, D. L. (2019). A Highly Active Bidentate Magnesium Catalyst for Amine‐Borane Dehydrocoupling: Kinetic and Mechanistic Studies. Chemistry - A European Journal, 25(27), 6840-6846. https://doi.org/10.1002/chem.201901197

A magnesium complex (1) featuring a bidentate aminopyridinato ligand is a remarkably selective catalyst for the dehydrocoupling of amine-boranes. This reaction proceeds to completion with low catalyst loadings (1 mol%) und... Read More about A Highly Active Bidentate Magnesium Catalyst for Amine‐Borane Dehydrocoupling: Kinetic and Mechanistic Studies.

Monitoring morphology evolution within block copolymer microparticles during dispersion polymerisation in supercritical carbon dioxide: a high pressure SAXS study (2019)
Journal Article
Alauhdin, M., Bennett, T. M., He, G., Bassett, S. P., Portale, G., Bras, W., …Howdle, S. M. (2019). Monitoring morphology evolution within block copolymer microparticles during dispersion polymerisation in supercritical carbon dioxide: a high pressure SAXS study. Polymer Chemistry, 10(7), 860-871. https://doi.org/10.1039/c8py01578c

Reversible addition–fragmentation chain transfer (RAFT) dispersion polymerisation in supercritical carbon dioxide is an effective process for creating block copolymer microparticles with internal nanostructures. Here we report an alternative synthesi... Read More about Monitoring morphology evolution within block copolymer microparticles during dispersion polymerisation in supercritical carbon dioxide: a high pressure SAXS study.