Skip to main content

Research Repository

Advanced Search

All Outputs (30)

High purity Ge-Sb-Se/S step index optical fibers (2019)
Journal Article
Parnell, H., Furniss, D., Tang, Z., Fang, Y., Benson, T., Canedy, C., …Seddon, A. (2019). High purity Ge-Sb-Se/S step index optical fibers. Optical Materials Express, 9(9), 3616-3626. https://doi.org/10.1364/OME.9.003616

Chalcogenide glasses are a promising group of materials for remote sensing applications. Two compositions from the Ge-Sb-Se/S system are investigated as core and cladding glasses in a step index fiber (SIF). Following thermomechanical and refractive... Read More about High purity Ge-Sb-Se/S step index optical fibers.

Experimental observation of gain in a resonantly pumped Pr3+-doped chalcogenide glass mid-infrared fibre amplifier notwithstanding the signal excited-state absorption (2019)
Journal Article
Shen, M., Furniss, D., Farries, M., Jayasuriya, D., Tang, Z., Sojka, L., …Seddon, A. B. (2019). Experimental observation of gain in a resonantly pumped Pr3+-doped chalcogenide glass mid-infrared fibre amplifier notwithstanding the signal excited-state absorption. Scientific Reports, 9, Article 11426. https://doi.org/10.1038/s41598-019-47432-w

We demonstrate a maximum gain of 4.6 dB at a signal wavelength of 5.28 μm in a 4.1 μm resonantly pumped Pr3+- doped selenide-based chalcogenide glass fibre amplifier of length 109 mm, as well as a new signal excited-stated absorption (ESA) at signal... Read More about Experimental observation of gain in a resonantly pumped Pr3+-doped chalcogenide glass mid-infrared fibre amplifier notwithstanding the signal excited-state absorption.

Determining the continuous thermo-optic coefficients of chalcogenide glass thin films in the MIR region using FTIR transmission spectra (2019)
Journal Article
Fang, Y., Furniss, D., Jayasuriya, D., Parnell, H., Tang, Z., Seddon, A. B., & Benson, T. M. (2019). Determining the continuous thermo-optic coefficients of chalcogenide glass thin films in the MIR region using FTIR transmission spectra. Optics Express, 27(16), 22275-22288. https://doi.org/10.1364/OE.27.022275

A new method (FTIR continuous dn / dT method, n is refractive index and T temperature) for measuring the continuous thermo-optic coefficients of thin transparent films in the mid-infrared (MIR) spectral region is introduced. The technique is based on... Read More about Determining the continuous thermo-optic coefficients of chalcogenide glass thin films in the MIR region using FTIR transmission spectra.

Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber (2019)
Journal Article
Jayasuriya, D., Petersen, C. R., Furniss, D., Markos, C., Tang, Z., Habib, M. S., …Seddon, A. B. (2019). Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber. Optical Materials Express, 9(6), 2617-2629. https://doi.org/10.1364/ome.9.002617

This work reports on the fabrication and subsequent supercontinuum generation in a Ge-As-Se-Te/Ge-As-Se core/clad chalcogenide step-index fiber with an elliptical-core and an ultra-high numerical aperture of 1.88 ± 0.02 from 2.5 - 15 µm wavelength. T... Read More about Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber.

Determining small refractive index contrast in chalcogenide-glass pairs at mid-infrared wavelengths (2019)
Journal Article
Fang, Y., Furniss, D., Jayasuriya, D., Parnell, H., Crane, R., Tang, Z., …Benson, T. (2019). Determining small refractive index contrast in chalcogenide-glass pairs at mid-infrared wavelengths. Optical Materials Express, 9(5), 2022-2036. https://doi.org/10.1364/OME.9.002022

A two-composition thin film (Ge20Sb10Se70/Ge20Sb10Se67S3 atomic%core/cladding glasses) was fabricated using a hot-fibre-pressing technique in which both glasses follow the same post-fibre processing. A simple approach is proposed that uses normal inc... Read More about Determining small refractive index contrast in chalcogenide-glass pairs at mid-infrared wavelengths.

Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber (2019)
Journal Article
Sujecki, S., Sojka, L., Beres-Pawlik, E., Anders, K., Piramidowicz, R., Tang, Z., …Seddon, A. (2019). Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber. Journal of Luminescence, 209, 14-20. https://doi.org/10.1016/j.jlumin.2019.01.023

This contribution reports on detailed experimental and numerical investigations of both near-infrared (NIR) and mid-infrared (MIR) photoluminescence obtained in praseodymium trivalent ion doped chalcogenide-selenide glass fiber. The experimental anal... Read More about Experimental and numerical investigation to rationalize both near-infrared and mid-infrared spontaneous emission in Pr3+ doped selenide-chalcogenide fiber.

Comparative study of praseodymium additives in active selenide chalcogenide optical fibers (2018)
Journal Article
Tang, Z., Sojka, L., Furniss, D., Nunes, J., Sakr, H., Barney, E., …Seddon, A. B. (2018). Comparative study of praseodymium additives in active selenide chalcogenide optical fibers. Optical Materials Express, 8(12), 3910-3926. https://doi.org/10.1364/OME.8.003910

The choice of rare earth additive when doping chalcogenide glasses can affect their mid-infrared fiber performance. Three praseodymium additives, Pr-foil, PrCl3 and PrI3 are investigated in Ge-As-Ga-Se fibers. All the fibers are X-ray amorphous and t... Read More about Comparative study of praseodymium additives in active selenide chalcogenide optical fibers.

Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes (2018)
Journal Article
Shen, M., Furniss, D., Tang, Z., Barney, E. R., Sójka, L., Sujecki, S., …Seddon, A. B. (2018). Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes. Optics Express, 26(18), 23641-23660. https://doi.org/10.1364/OE.26.023641

We propose a model for resonantly pumped Pr3+-doped chalcogenide fiber amplifiers which includes excited state absorption and the full spectral amplified spontaneous emission spanning from 2 μm to 6 μm. Based on this model, the observed near- and mid... Read More about Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes.

Spatiotemporal modeling of mid-infrared photoluminiscence from Terbium (III) ion doped chalcogenide-selenide multimode fibers (2018)
Conference Proceeding
Sujecki, S., Sojka, L., Tang, Z., Barney, E., Furniss, D., Benson, T., & Seddon, A. (2018). Spatiotemporal modeling of mid-infrared photoluminiscence from Terbium (III) ion doped chalcogenide-selenide multimode fibers. In REMAT 2018 5th International Conference on Rare Earth Materials

Mid-infrared (MIR) light has numerous applications in medicine, biology, agriculture, defense and security. Therefore in many laboratories intensive research is being carried out to develop MIR light technology in order to achieve a similar level of... Read More about Spatiotemporal modeling of mid-infrared photoluminiscence from Terbium (III) ion doped chalcogenide-selenide multimode fibers.

Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers (2018)
Journal Article
Sujecki, S., Sojka, L., Pawlik, E., Anders, K., Piramidowicz, R., Tang, Z., …Seddon, A. (2018). Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers. Journal of Luminescence, 199, https://doi.org/10.1016/j.jlumin.2018.03.031

In this contribution we use a numerical model to study the photoluminescence emitted by Tb3+ doped chalcogenide-selenide glass fibers pumped by laser light at approximately 3 µm. The model consists of the set of ordinary differential equations (ODEs)... Read More about Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers.

Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources (2017)
Journal Article
Sujecki, S., Sójka, L., Bereś-Pawlik, E., Sakr, H., Tang, Z., Barney, E. R., …Seddon, A. B. (2017). Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources. Optical and Quantum Electronics, 49(12), Article 416. https://doi.org/10.1007/s11082-017-1255-5

A model is developed of a terbium (III) ion doped selenide chalcogenide glass fibre source that provides spontaneous emission within the mid-infrared (MIR) wavelength range. Three numerical algorithms are used to calculate the solution and compare th... Read More about Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources.

Modelling of multimode selenide-chalcogenide glass fibre based mir spontaneous emission sources (2017)
Conference Proceeding
Sujecki, S., Sójka, L., Bereś-Pawlik, E., Piramidowicz, R., Sakr, H., Tang, Z., …Seddon, A. B. (2017). Modelling of multimode selenide-chalcogenide glass fibre based mir spontaneous emission sources. In 2017 19th International Conference on Transparent Optical Networks (ICTON) (1-4). https://doi.org/10.1109/ICTON.2017.8024909

Chalcogenide glass fibres have been demonstrated as a suitable medium for the realisation of spontaneous emission sources for mid-infrared photonics applications with a particular emphasis on sensor technology. Such sources give a viable alternative... Read More about Modelling of multimode selenide-chalcogenide glass fibre based mir spontaneous emission sources.

Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method (2017)
Journal Article
Fang, Y., Jayasuriya, D., Furniss, D., Tang, Z., Sojka, Ł., Markos, C., …Benson, T. (2017). Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method. Optical and Quantum Electronics, 49, Article 237. https://doi.org/10.1007/s11082-017-1057-9

The well-known method presented by Swanepoel can be used to determine the refractive index dispersion of thin films in the near-infrared region from wavelength values at maxima and minima, only, of the transmission interference fringes. In order to e... Read More about Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method.

Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF) (2017)
Journal Article
Sakr, H., Tang, Z., Furniss, D., Sojka, L., Sujecki, S., Benson, T. M., & Seddon, A. B. (2017). Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF). Optical Materials, 67, 98-107. https://doi.org/10.1016/j.optmat.2017.03.034

Selenide-chalcogenide glass, small-core, step-index fiber (SIF), core-doped with Pr3+: 9.51 × 1024 ions m−3 (500 ppmw) is fabricated for the first time with indium to help solubilize Pr3+. Core diameters of 20 or 40 μm are confirmed using scanning el... Read More about Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF).

Numerical modeling of lathanide-ion doped fibre lasers operating within mid-infrared wavelength region (2016)
Conference Proceeding
Sójka, L., Furniss, D., Tang, Z., Sakr, H., Barney, E. R., Benson, T. M., …Fuhrberg, P. (2016). Numerical modeling of lathanide-ion doped fibre lasers operating within mid-infrared wavelength region.

We discuss the numerical modelling of lanthanide-ion doped chalcogenide glass fibre lasers for operation in the mid-infrared wavelength region. We extract the modelling parameters from emission and absorption measurements using Judd-Ofelt and McCumbe... Read More about Numerical modeling of lathanide-ion doped fibre lasers operating within mid-infrared wavelength region.

Dy3+-doped selenide chalcogenide glasses: influence of Dy3+ dopant-aditive and containment (2016)
Journal Article
Furniss, D., Tang, Z., Barney, E., Neate, N. C., Benson, T., & Seddon, A. (2016). Dy3+-doped selenide chalcogenide glasses: influence of Dy3+ dopant-aditive and containment. Journal of the American Ceramic Society, 99(7), 2283-2291. doi:10.1111/jace.14218

This work reports on process‐induced impurities in rare‐earth ion: Dy3+‐doped selenide chalcogenide glasses, which are significant materials for active photonic devices in the mid‐infrared region. In particular, the effect of contamination from t... Read More about Dy3+-doped selenide chalcogenide glasses: influence of Dy3+ dopant-aditive and containment.