Skip to main content

Research Repository

Advanced Search

All Outputs (71)

A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2023). A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/TTE.2023.3333270

This article proposes a new droop control design method based on a “reversed data training” of artificial neural network (ANN). Conventionally, after data collection, the ANN is used for forward mapping the control variables (inputs) and system respo... Read More about A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft.

An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications (2023)
Journal Article
Guo, F., M. Diab, A., Shen Yeoh, S., Yang, T., Bozhko, S., Wheeler, P., & Zhao, Y. (2024). An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications. IEEE Transactions on Energy Conversion, 39(1), 356-367. https://doi.org/10.1109/TEC.2023.3312599

Since three-level neutral-point-clamped (3L-NPC) power generation units bring much competitiveness to the next-generation electric starter/generator (ESG) system for more-electric-aircraft (MEA) applications, the versatile multi-optimized pulse-width... Read More about An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications.

Dynamic Average Consensus with Anti-windup applied to Interlinking Converters in AC/DC Microgrids under Economic Dispatch and Delays (2023)
Journal Article
Martinez-Gomez, M., Orchard, M. E., & Bozhko, S. (2023). Dynamic Average Consensus with Anti-windup applied to Interlinking Converters in AC/DC Microgrids under Economic Dispatch and Delays. IEEE Transactions on Smart Grid, 14(5), 4137 - 4140. https://doi.org/10.1109/tsg.2023.3291208

This work proposes an application of dynamic average consensus in interlinking converters of AC/DC microgrids with a distributed anti-windup for dealing with steady-state errors from communication delays. The proposed controller consists of a PI cont... Read More about Dynamic Average Consensus with Anti-windup applied to Interlinking Converters in AC/DC Microgrids under Economic Dispatch and Delays.

Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA (2023)
Journal Article
Mohamed, M. A. A., Shen Yeoh, S., Atkin, J., Diab, A. M., Khalaf, M., & Bozhko, S. (2023). Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA. Aerospace, 10(2), Article 168. https://doi.org/10.3390/aerospace10020168

A control approach for aircraft Starter/Generator (S/G) with Permanent Magnet Machine (PMM) operating in Flux Weakening (FW) mode is presented. The proposed strategy helps the previous approaches which are adopted for the Variable Voltage Bus (VVB) o... Read More about Enhanced Starting Control Scheme for PMM-Based Starter/Generator System for MEA.

Sliding Mode Input Current Control of the Synchronous DC-DC Buck Converter for Electro-Mechanical Actuator Emulation in More Electric Aircrafts (2022)
Journal Article
Salimi, M., Klumpner, C., & Bozhko, S. (2022). Sliding Mode Input Current Control of the Synchronous DC-DC Buck Converter for Electro-Mechanical Actuator Emulation in More Electric Aircrafts. Energies, 15(24), Article 9628. https://doi.org/10.3390/en15249628

The main challenges of the input current control in synchronous DC-DC buck converters are the nonlinear model of the system, changes of the operating point in a wide range, and the need to use an input LC filter for current smoothing, which may resul... Read More about Sliding Mode Input Current Control of the Synchronous DC-DC Buck Converter for Electro-Mechanical Actuator Emulation in More Electric Aircrafts.

Inverse application of artificial intelligence for the control of power converters (2022)
Journal Article
Gao, Y., Wang, S., Hussaini, H., Yang, T., Dragicevic, T., Bozhko, S., …Vazquez, S. (2022). Inverse application of artificial intelligence for the control of power converters. IEEE Transactions on Power Electronics, https://doi.org/10.1109/TPEL.2022.3209093

This paper proposes a novel application method, Inverse Application of Artificial Intelligence (IAAI) for the control of power electronic converter systems. The proposed method can give the desired control coefficients/references in a simple way beca... Read More about Inverse application of artificial intelligence for the control of power converters.

Comparative Stability Analysis of Synchronous Reference Frame Current Controllers Operated at High Fundamental Frequency (2022)
Journal Article
Diab, A. M., Guo, F., Yeoh, S. S., Bozhko, S., Gerada, C., & Galea, M. (2022). Comparative Stability Analysis of Synchronous Reference Frame Current Controllers Operated at High Fundamental Frequency. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/TTE.2022.3208825

Synchronous reference frame (SRF) proportional-integral (PI) current controller (CC) is the most well-established solution for current regulation in AC machine drives and grid-connected voltage source converters. The design of high dynamic performanc... Read More about Comparative Stability Analysis of Synchronous Reference Frame Current Controllers Operated at High Fundamental Frequency.

Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications (2022)
Journal Article
Zhang, X., Yang, T., & Bozhko, S. (2022). Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/TTE.2022.3194972

With the electrification trend of future aircraft, high-speed Permanent Magnet Starters/Generators (PMS/Gs) will potentially be widely used in onboard generation systems due to their high power density and high efficiency. However, the per-unit react... Read More about Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications.

Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives (2022)
Journal Article
Guo, F., Yang, T., Diab, A. M., Huang, Z., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023). Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives. IEEE Transactions on Industrial Electronics, 70(4), 3449-3460. https://doi.org/10.1109/tie.2022.3176309

In the aircraft electric starter/generator system, the three-level neutral-point-clamped converters play a crucial role in driving turbofan engines and delivering onboard electrical power. However, the conventional pulsewidth modulation (PWM) strateg... Read More about Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives.

Mild hybridisation of turboprop engine with high-power-density integrated electric drives (2022)
Journal Article
Cossart, G., Chen, Y., Yang, T., Khowja, M., La Rocca, A., Nasir, U., …Wheeler, P. (2022). Mild hybridisation of turboprop engine with high-power-density integrated electric drives. IEEE Transactions on Transportation Electrification, 8(4), 4148-4162. https://doi.org/10.1109/TTE.2022.3160153

This paper shares with the aerospace community a case study of turboprop mild hybridisation using a recently developed integrated drive system in the University of Nottingham, UK, within the ACHIEVE project under EU H2020 CleanSky 2 program (project... Read More about Mild hybridisation of turboprop engine with high-power-density integrated electric drives.

Efficiency Focused Energy Management Strategy Based on Optimal Droop Gain Design for More Electric Aircraft (2022)
Journal Article
Mohamed, M. A., Yeoh, S. S., Atkin, J., Hussaini, H., & Bozhko, S. (2022). Efficiency Focused Energy Management Strategy Based on Optimal Droop Gain Design for More Electric Aircraft. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/tte.2022.3159731

Due to the substantial increase of the number of electrically-driven systems on-board More Electric Aircraft (MEA), the on-board Electric Power Systems (EPS) are becoming more and more complex. Therefore, there is a need to develop a control strategy... Read More about Efficiency Focused Energy Management Strategy Based on Optimal Droop Gain Design for More Electric Aircraft.

Development of a smart supercapacitor energy storage system for aircraft electric power systems (2021)
Journal Article
Fares, A. M., Kippke, M., Rashed, M., Klumpner, C., & Bozhko, S. (2021). Development of a smart supercapacitor energy storage system for aircraft electric power systems. Energies, 14(23), Article 8056. https://doi.org/10.3390/en14238056

This paper presents the development of a supercapacitor energy storage system (ESS) aimed to minimize weight, which is very important for aerospace applications, whilst integrating smart functionalities like voltage monitoring, equalization, and over... Read More about Development of a smart supercapacitor energy storage system for aircraft electric power systems.

An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives (2021)
Journal Article
Li, C., Yang, T., Huang, Z., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2021). An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives. IEEE Access, 9, 144805-144819. https://doi.org/10.1109/access.2021.3122922

This paper introduces an advanced space vector modulation technique for three-level neutral-point-clamped (3L-NPC) converters. The studied 3L-NPC converters within aircraft electric starter generator (ESG) systems normally operate at high modulation... Read More about An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives.

Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications (2021)
Journal Article
Gao, Y., Yang, T., Bozhko, S., Wheeler, P., Dragicevic, T., & Gerada, C. (2022). Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications. Chinese Journal of Aeronautics, 35(10), 233-246. https://doi.org/10.1016/j.cja.2021.08.006

This study uses the Neural Network (NN) technique to optimize design of surface-mounted Permanent Magnet Synchronous Motors (PMSMs) for More-Electric Aircraft (MEA) applications. The key role of NN is to provide dedicated correction factors for the a... Read More about Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications.

ENIGMA—A Centralised Supervisory Controller for Enhanced Onboard Electrical Energy Management with Model in the Loop Demonstration (2021)
Journal Article
Sumsurooah, S., He, Y., Torchio, M., Kouramas, K., Guida, B., Cuomo, F., …Cavallo, A. (2021). ENIGMA—A Centralised Supervisory Controller for Enhanced Onboard Electrical Energy Management with Model in the Loop Demonstration. Energies, 14(17), Article 5518. https://doi.org/10.3390/en14175518

A centralised smart supervisor (CSS) controller with enhanced electrical energy management (E2-EM) capability has been developed for an Iron Bird Electrical Power Generation and Distribution System (EPGDS) within the Clean Sky 2 ENhanced electrical e... Read More about ENIGMA—A Centralised Supervisory Controller for Enhanced Onboard Electrical Energy Management with Model in the Loop Demonstration.

An Overmodulation Algorithm With Neutral-Point Voltage Balancing for Three-Level Converters in High-Speed Aerospace Drives (2021)
Journal Article
Guo, F., Yang, T., Diab, A. M., Yeoh, S. S., Li, C., Bozhko, S., & Wheeler, P. (2022). An Overmodulation Algorithm With Neutral-Point Voltage Balancing for Three-Level Converters in High-Speed Aerospace Drives. IEEE Transactions on Power Electronics, 37(2), 2021-2032. https://doi.org/10.1109/tpel.2021.3105752

In this article, a virtual space vector based overmodulation algorithm is presented for three-level neutral-point (NP) clamped converters in high-speed aerospace motor drives. With the proposed inscribed polygonal-boundary compression technique, the... Read More about An Overmodulation Algorithm With Neutral-Point Voltage Balancing for Three-Level Converters in High-Speed Aerospace Drives.

An enhanced feedforward flux weakening control for high-speed permanent magnet machine drive applications (2021)
Journal Article
Lang, X., Yang, T., Li, C., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2021). An enhanced feedforward flux weakening control for high-speed permanent magnet machine drive applications. IET Power Electronics, 14(13), 2179-2193. https://doi.org/10.1049/pel2.12170

Permanent magnet machines have been used in the high-speed drive applications due to their high-efficiency, high-power-density, and wide-speed range characteristics. However, control of such high-speed permanent magnet machines machine is always chal... Read More about An enhanced feedforward flux weakening control for high-speed permanent magnet machine drive applications.

Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications (2021)
Journal Article
Wang, C., Yang, T., Hussaini, H., & Bozhko, S. (2022). Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications. IEEE Transactions on Industrial Electronics, 69(7), 6508-6518. https://doi.org/10.1109/tie.2021.3099239

Harmonics generated from power electronic converters will impose significant power quality challenges to the electric grid onboard future aircraft. In this article, we propose an innovative modulation scheme that enables using a buck-boost dc-dc conv... Read More about Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications.

Stability Improvement of Onboard HVdc Grid and Engine Using an Advanced Power Generation Center for the More-Electric Aircraft (2021)
Journal Article
Lang, X., Yang, T., Huang, Z., Wang, C., Wang, Z., Bozhko, S., & Wheeler, P. (2021). Stability Improvement of Onboard HVdc Grid and Engine Using an Advanced Power Generation Center for the More-Electric Aircraft. IEEE Transactions on Transportation Electrification, 8(1), 660-674. https://doi.org/10.1109/tte.2021.3095256

In the high-power settings of engine, such as maximum take-off, more power should be extracted from the high-pressure spool of engine (HPS) than the low-pressure spool of engine (LPS) to avoid the overspeed and potential instability of the HPS. Howev... Read More about Stability Improvement of Onboard HVdc Grid and Engine Using an Advanced Power Generation Center for the More-Electric Aircraft.

Fault Tolerant Control of Advanced Power Generation Center for More-Electric Aircraft Applications (2021)
Journal Article
Lang, X., Yang, T., Wang, Z., Wang, C., Bozhko, S., & Wheeler, P. (2021). Fault Tolerant Control of Advanced Power Generation Center for More-Electric Aircraft Applications. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/tte.2021.3093506

This paper presents a control scheme for a recently reported aircraft advanced power generation center (APGC) during postfault operation conditions. Within the APGC, two electrical generators extract power from two separate engine shafts and supply e... Read More about Fault Tolerant Control of Advanced Power Generation Center for More-Electric Aircraft Applications.