Skip to main content

Research Repository

Advanced Search

All Outputs (15)

m6A mRNA methylation in human brain is disrupted in Lewy body disorders (2023)
Journal Article
Martinez De La Cruz, B., Gell, C., Markus, R., Macdonald, I., Fray, R., & Knight, H. M. (2023). m6A mRNA methylation in human brain is disrupted in Lewy body disorders. Neuropathology and Applied Neurobiology, 49(1), Article e12885. https://doi.org/10.1111/nan.12885

N6-methyladenosine modification of RNA (m6A) regulates translational control which may influence neuronal dysfunction underlying neurodegenerative diseases. Using microscopy and a machine learning approach, we performed cellular profiling of m6A-RNA... Read More about m6A mRNA methylation in human brain is disrupted in Lewy body disorders.

The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode (2023)
Journal Article
Baron, F., Zhang, M., Archer, N., Bellows, E., Knight, H. M., Welham, S., …Bodi, Z. (2023). The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode. RNA, 29(6), 777-789. https://doi.org/10.1261/rna.079615.123

N6-methyladenosine (m6A) in mRNA regulates almost every stage in the mRNA life cycle, and the development of methodologies for the high-throughput detection of methylated sites in mRNA using m6A-specific methylated RNA immunoprecipitation with next-g... Read More about The importance of m6A topology in chicken embryo mRNA: a precise mapping of m6A at the conserved chicken β-actin zipcode.

Clinical and molecular significance of the RNA m6A methyltransferase complex in prostate cancer (2023)
Journal Article
Lothion-Roy, J., Haigh, D. B., Harris, A. E., Metzler, V. M., Alsaleem, M., Toss, M. S., …Woodcock, C. L. (2023). Clinical and molecular significance of the RNA m6A methyltransferase complex in prostate cancer. Frontiers in Genetics, 13, Article 1096071. https://doi.org/10.3389/fgene.2022.1096071

N6-methyladenosine (m6A) is the most abundant internal mRNA modification and is dynamically regulated through distinct protein complexes that methylate, demethylate, and/or interpret the m6A modification. These proteins, and the m6A modification, are... Read More about Clinical and molecular significance of the RNA m6A methyltransferase complex in prostate cancer.

Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer (2022)
Journal Article
Harris, A. E., Metzler, V. M., Lothion-Roy, J., Varun, D., Woodcock, C. L., Haigh, D. B., …Jeyapalan, J. N. (2022). Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Frontiers in Endocrinology, 13, Article 1006101. https://doi.org/10.3389/fendo.2022.1006101

Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bic... Read More about Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer.

The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer (2022)
Journal Article
Haigh, D. B., Woodcock, C. L., Lothion-Roy, J., Harris, A. E., Metzler, V. M., Persson, J. L., …Mongan, N. P. (2022). The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer. Cancers, 14(20), Article 5148. https://doi.org/10.3390/cancers14205148

Prostate cancer (PCa) is a leading cause of cancer-related deaths and is driven by aberrant androgen receptor (AR) signalling. For this reason, androgen deprivation therapies (ADTs) that suppress androgen-induced PCa progression either by preventing... Read More about The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer.

CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses (2022)
Journal Article
Haussmann, I. U., Wu, Y., Nallasivan, M. P., Archer, N., Bodi, Z., Hebenstreit, D., …Soller, M. (2022). CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses. Nature Communications, 13(1), Article 1209. https://doi.org/10.1038/s41467-022-28549-5

Cap-adjacent nucleotides of animal, protist and viral mRNAs can be O-methylated at the 2`position of the ribose (cOMe). The functions of cOMe in animals, however, remain largely unknown. Here we show that the two cap methyltransferases (CMTr1 and CMT... Read More about CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses.

Two zinc finger proteins with functions in m6A writing interact with HAKAI (2022)
Journal Article
Zhang, M., Bodi, Z., Mackinnon, K., Zhong, S., Archer, N., Mongan, N. P., …Fray, R. G. (2022). Two zinc finger proteins with functions in m6A writing interact with HAKAI. Nature Communications, 13(1), Article 1127. https://doi.org/10.1038/s41467-022-28753-3

The methyltransferase complex (m6A writer), which catalyzes the deposition of N6-methyladenosine (m6A) in mRNAs, is highly conserved across most eukaryotic organisms, but its components and interactions between them are still far from fully understoo... Read More about Two zinc finger proteins with functions in m6A writing interact with HAKAI.

Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging (2021)
Journal Article
Martinez De La Cruz, B., Markus, R., Malla, S., Haig, M. I., Gell, C., Sang, F., …Knight, H. M. (2021). Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging. Molecular Psychiatry, 26(12), 7141-7153. https://doi.org/10.1038/s41380-021-01282-z

Synaptic plasticity processes, which underlie learning and memory formation, require RNA to be translated local to synapses. The synaptic tagging hypothesis has previously been proposed to explain how mRNAs are available at specific activated synapse... Read More about Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging.

mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana (2020)
Journal Article
Bhat, S. S., Bielewicz, D., Gulanicz, T., Bodi, Z., Yu, X., Anderson, S. J., …Szweykowska-Kulinska, Z. (2020). mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 117(35), 21785-21795. https://doi.org/10.1073/pnas.2003733117

Copyright © 2020 the Author(s). Published by PNAS. In Arabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introduces N6-methyladenosine (m6A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that a... Read More about mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana.

N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilise mRNAs in Arabidopsis (2018)
Journal Article
Anderson, S. J., Kramer, M. C., Gosai, S. J., Liu, X., Vandivier, L. E., Nelson, A. D., …Gregory, B. D. (2018). N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilise mRNAs in Arabidopsis. Cell Reports, 25(5), 1146-1157. https://doi.org/10.1016/j.celrep.2018.10.020

N6-methyladenosine (m6A) is a dynamic, reversible, covalently modified ribonucleotide that occurs predominantly toward 30 ends of eukaryotic mRNAs and is essential for their proper function and regulation. In Arabidopsis thaliana, many RNAs contain a... Read More about N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilise mRNAs in Arabidopsis.

Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI (2017)
Journal Article
Růžička, K., Zhang, M., Campilho, A., Bodi, Z., Kashif, M., Saleh, M., …Fray, R. G. (2017). Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytologist, 215(1), 157-172. https://doi.org/10.1111/nph.14586

N6-adenosine methylation (m6A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemis... Read More about Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI.

Accessing low-oxidation state taxanes: is taxadiene-4(5)-epoxide on the taxol biosynthetic pathway? (2016)
Journal Article
Barton, N. A., Marsh, B. J., Lewis, W., Narraidoo, N., Seymour, G. B., Fray, R. G., & Hayes, C. J. (in press). Accessing low-oxidation state taxanes: is taxadiene-4(5)-epoxide on the taxol biosynthetic pathway?. Chemical Science, 7(5), https://doi.org/10.1039/c5sc03463a

We have shown for the first time that taxadiene (3) can be epoxidised in a regio- and diastereoselective manner to provide taxadiene-4(5)-epoxide (12) as a single diastereoisomer, and that this epoxide can be rearranged to give taxa-4(20),11(12)-dien... Read More about Accessing low-oxidation state taxanes: is taxadiene-4(5)-epoxide on the taxol biosynthetic pathway?.

Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment (2015)
Journal Article
May, S. T., Bodi, Z., Bottley, A., Archer, N., May, S., & Fray, R. G. (2015). Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS ONE, 10(7), Article e0132090. https://doi.org/10.1371/journal.pone.0132090

Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO’s (Fat Mass Obesity) N6-methyladenosine (m6 A) deaminase activity, thus suggesting a link between obesity-... Read More about Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment.

A novel synthesis and detection method for cap-associated adenosine modifications in mouse mRNA (2011)
Journal Article
Kruse, S., Zhong, S., Bodi, Z., Button, J., Alcocer, M. J., Hayes, C. J., & Fray, R. (2011). A novel synthesis and detection method for cap-associated adenosine modifications in mouse mRNA. Scientific Reports, 1, https://doi.org/10.1038/srep00126

A method is described for the detection of certain nucleotide modifications adjacent to the 5' 7-methyl guanosine cap of mRNAs from individual genes. The method quantitatively measures the relative abundance of 2'-O-methyl and N 6.

Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell (2004)
Journal Article
Waters, M., Fray, R., & Pyke, K. (2004). Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell

Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. Durin... Read More about Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell.