Skip to main content

Research Repository

Advanced Search

All Outputs (32)

Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR (2024)
Journal Article
Austin, J. S., Xiao, W., Wang, F., Cottam, N. D., Rivers, G., Ward, E. B., …James, T. S. (2024). Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR. Journal of Materials Chemistry C, https://doi.org/10.1039/D4TC01917B

Colloidal low-dimensional photo-sensitive nanomaterials have attracted significant interest for optoelectronic device applications where inkjet printing offers a high accuracy and low waste route for their deposition on silicon-based, as well as flex... Read More about Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR.

Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient (2024)
Journal Article
Rivers, G., Lion, A., Rofiqoh Eviana Putri, N., Rance, G., Moloney, C., Taresco, V., …He, Y. (2024). Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient.

Identification of an affordable and printable metastable β Ti alloy with outstanding deformation behaviour for use in laser powder bed fusion (2024)
Journal Article
Zou, Z., Dunstan, M. K., McWilliams, B., Hague, R., & Simonelli, M. (2024). Identification of an affordable and printable metastable β Ti alloy with outstanding deformation behaviour for use in laser powder bed fusion. Materials Science and Engineering: A, 902, Article 146619. https://doi.org/10.1016/j.msea.2024.146619

Research on metastable β Ti alloys has recently shown the possibility to achieve outstanding ductility and work hardening behaviours by engineering the materials’ unique strain transformable attributes and responses to heat treatment. As quenching is... Read More about Identification of an affordable and printable metastable β Ti alloy with outstanding deformation behaviour for use in laser powder bed fusion.

Additive Manufacturing of Electrically Conductive Multi-Layered Nanocopper in an Air Environment (2024)
Journal Article
Pervan, D., Bastola, A., Worsley, R., Wildman, R., Hague, R., Lester, E., & Tuck, C. (2024). Additive Manufacturing of Electrically Conductive Multi-Layered Nanocopper in an Air Environment. Nanomaterials, 14(9), Article 753. https://doi.org/10.3390/nano14090753

The additive manufacturing (AM) of functional copper (Cu) parts is a major goal for many industries, from aerospace to automotive to electronics, because Cu has a high thermal and electrical conductivity as well as being ~10× cheaper than silver. Pre... Read More about Additive Manufacturing of Electrically Conductive Multi-Layered Nanocopper in an Air Environment.

arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., Escoffier, W., Goiran, M., Pierre, M., Makarovsky, O., & Turyanska, L. (2024). arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T. Small, 20(30), Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T.

Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution (2023)
Journal Article
Nelson-Dummett, O., Rivers, G., Gilani, N., Simonelli, M., Tuck, C. J., Wildman, R. D., …Turyanska, L. (2024). Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution. Additive Manufacturing Letters, 8, Article 100185. https://doi.org/10.1016/j.addlet.2023.100185

Drop-on-Demand additive manufacturing could offer a facile solution for scalable on-site manufacturing. With an increasing number of functional materials available for this technology, there are growing opportunities for applications, such as electro... Read More about Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution.

On the development of twinning-induced plasticity in additively manufactured 316L stainless steel (2023)
Journal Article
Crociata, D. D., Maskery, I., Hague, R., & Simonelli, M. (2023). On the development of twinning-induced plasticity in additively manufactured 316L stainless steel. Additive Manufacturing Letters, 7, Article 100176. https://doi.org/10.1016/j.addlet.2023.100176

A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels i... Read More about On the development of twinning-induced plasticity in additively manufactured 316L stainless steel.

Additive manufacturing processes for metals (2023)
Book Chapter
Aboulkhair, N. T., Bosio, F., Gilani, N., Phutela, C., Hague, R. J., & Tuck, C. J. (2023). Additive manufacturing processes for metals. In Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties (201-258). Elsevier. https://doi.org/10.1016/b978-0-323-88664-2.00016-6

Additive manufacturing (AM) processes are a family of net-shaped manufacturing systems that are widely being used and adopted for their distinctive characteristics. Recently, AM processes have positioned themselves to be worthy of playing a role in r... Read More about Additive manufacturing processes for metals.

Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals (2022)
Journal Article
Austin, J. S., Cottam, N. D., Zhang, C., Wang, F., Gosling, J. H., Nelson-Dummet, O., …Turyanska, L. (2023). Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals. Nanoscale, 15(5), 2134–2142. https://doi.org/10.1039/d2nr06429d

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs... Read More about Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals.

Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites (2022)
Preprint / Working Paper
he, Y., Begines, B., Trindade, G., Abdi, M., dubern, J., Prina, E., …Wildman, R. Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites

As our understanding of disease grows, it is becoming established that treatment needs to be personalized and targeted to the needs of the individual. In this paper we show that multi-material inkjet-based 3D printing, when backed with generative des... Read More about Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites.

3D reactive inkjet printing of bisphenol A-polycarbonate (2022)
Journal Article
Qian, Q., Kamps, J. H., Price, B., Gu, H., Wildman, R., Hague, R., …Tuck, C. (2022). 3D reactive inkjet printing of bisphenol A-polycarbonate. Additive Manufacturing, 54, Article 102745. https://doi.org/10.1016/j.addma.2022.102745

Additive Manufacturing (AM) techniques have gained extensive attention recently as they are able to directly produce 3D parts utilising a layer-by-layer manner. Inkjet printing is one such technique which can produce micron-scale features but is gene... Read More about 3D reactive inkjet printing of bisphenol A-polycarbonate.

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

FLatt Pack: A research-focussed lattice design program (2021)
Journal Article
Maskery, I., Parry, L. A., Padrão, D., Hague, R., & Ashcroft, I. A. (2022). FLatt Pack: A research-focussed lattice design program. Additive Manufacturing, 49, Article 102510. https://doi.org/10.1016/j.addma.2021.102510

Lattice structures are an important aspect of design for additive manufacturing (DfAM). They enable significant component light-weighting and the tailoring of a wide range of physical responses; mechanical, thermal, acoustic, etc. In turn, lattice de... Read More about FLatt Pack: A research-focussed lattice design program.

The interaction of volatile metal coatings during the laser powder bed fusion of copper (2021)
Journal Article
Speidel, A., Wadge, M. D., Gargalis, L., Cooper, T. P., Reynolds, W., Grant, D., …Murray, J. W. (2022). The interaction of volatile metal coatings during the laser powder bed fusion of copper. Journal of Materials Processing Technology, 299, Article 117332. https://doi.org/10.1016/j.jmatprotec.2021.117332

The high optical reflectance of Cu at near-infrared wavelengths narrows the process window to fabricate Cu parts by laser powder bed fusion (LPBF). Coating powders with optically absorptive materials has been investigated to improve processability an... Read More about The interaction of volatile metal coatings during the laser powder bed fusion of copper.

Process-structure-property relationships in laser powder bed fusion of permanent magnetic Nd-Fe-B (2021)
Journal Article
Wu, J., Aboulkhair, N. T., Degano, M., Ashcroft, I., & Hague, R. J. (2021). Process-structure-property relationships in laser powder bed fusion of permanent magnetic Nd-Fe-B. Materials and Design, 209, Article 109992. https://doi.org/10.1016/j.matdes.2021.109992

Laser powder-bed fusion (L-PBF), as an additive manufacturing (AM) technique, has demonstrated excellent capabilities in achieving degrees of freedom in manufacturing that are otherwise unattainable. The potential of combining Nd-Fe-B as a permanent... Read More about Process-structure-property relationships in laser powder bed fusion of permanent magnetic Nd-Fe-B.

Additive Manufacturing and Testing of a Soft Magnetic Rotor for a Switched Reluctance Motor (2020)
Journal Article
Gargalis, L., Madonna, V., Giangrande, P., Rocca, R., Hardy, M., Ashcroft, I., …Hague, R. (2020). Additive Manufacturing and Testing of a Soft Magnetic Rotor for a Switched Reluctance Motor. IEEE Access, 8, 206982-206991. https://doi.org/10.1109/ACCESS.2020.3037190

Additive manufacturing is acknowledged as a key enabling technology, although its adoption is still constrained to niche applications. A promising area for this technology is the production of electrical machines (EMs) and/or their main components (e... Read More about Additive Manufacturing and Testing of a Soft Magnetic Rotor for a Switched Reluctance Motor.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

Recommended Personal Protective Equipment for Cochlear Implant and Other Mastoid Surgery During the COVID-19 Era (2020)
Journal Article
Lawrence, R. J., O'Donoghue, G., Kitterick, P., O'Donoghue, K., Hague, R., Mitchell, L., …Hartley, D. E. (2020). Recommended Personal Protective Equipment for Cochlear Implant and Other Mastoid Surgery During the COVID-19 Era. Laryngoscope, 130(11), 2693-2699. https://doi.org/10.1002/lary.29014

© 2020 American Laryngological, Rhinological and Otological Society Inc, "The Triological Society" and American Laryngological Association (ALA) Objectives/Hypothesis: The overall aim of this study was to evaluate personal protective equipment (PPE)... Read More about Recommended Personal Protective Equipment for Cochlear Implant and Other Mastoid Surgery During the COVID-19 Era.

Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation (2020)
Preprint / Working Paper
He, Y., Begines, B., Luckett, J., Dubern, J., Hook, A., Prina, E., …Wildman, R. D. Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation

We demonstrate the formulation of advanced functional 3D printing inks that prevent the formation of bacterial biofilms in vivo. Starting from polymer libraries, we show that a biofilm resistant object can be 3D printed with the potential for shape a... Read More about Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation.