Skip to main content

Research Repository

Advanced Search

All Outputs (22)

Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip (2023)
Journal Article
Vassey, M., Ma, L., Kämmerling, L., Mbadugha, C., Trindade, G. F., Figueredo, G. P., …Alexander, M. R. (2023). Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip. Matter, 6(3), 887-906. https://doi.org/10.1016/j.matt.2023.01.002

To design effective immunomodulatory implants, innate immune cell interactions at the surface of biomaterials need to be controlled and understood. The architectural design freedom of two-photon polymerization is used to produce arrays of surface-mou... Read More about Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip.

Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing (2023)
Journal Article
Im, J., Liu, Y., Hu, Q., Trindade, G. F., Parmenter, C., Fay, M., …Turyanska, L. (2023). Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing. Advanced Functional Materials, 33(39), Article 2211920. https://doi.org/10.1002/adfm.202211920

This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a singl... Read More about Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing.

Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs (2022)
Journal Article
Sanjuan-Alberte, P., Whitehead, C., Jones, J. N., Silva, J. C., Carter, N., Kellaway, S., …Rawson, F. J. (2022). Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs. iScience, 25(7), Article 104552. https://doi.org/10.1016/j.isci.2022.104552

Conductive hydrogels are emerging as promising materials for bioelectronic applications as they minimize the mismatch between biological and electronic systems. We propose a strategy to bioprint biohybrid conductive bioinks based on decellularized ex... Read More about Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs.

Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers” (2022)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., …Wildman, R. D. (2022). Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers”. ACS Applied Materials and Interfaces, 14(6), 8654. https://doi.org/10.1021/acsami.2c00035

The chemical structure of the drug trandolapril has been corrected in Figure 4c. The conclusions of the work have not been affected by this correction. (Figure present).

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing (2021)
Journal Article
Hu, Q., Rance, G. A., Trindade, G. F., Pervan, D., Jiang, L., Foerster, A., …Wildman, R. D. (2022). The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing. Additive Manufacturing, 51, Article 102575. https://doi.org/10.1016/j.addma.2021.102575

Two-photon polymerisation (2PP) based additive manufacturing has emerged as a powerful technology to fabricate complex three-dimensional micro- and nanoscale architectures. However, a comprehensive understanding of the effect of printing parameters o... Read More about The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing.

Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells (2021)
Journal Article
Robinson, A. J., Jain, A., Rahman, R., Abayzeed, S., Hague, R. J., & Rawson, F. J. (2021). Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells. ACS Omega, 6(44), 29495-29505. https://doi.org/10.1021/acsomega.1c03547

Merging of electronics with biology, defined as bioelectronics, at the nanoscale holds considerable promise for sensing and modulating cellular behavior. Advancing our understanding of nanobioelectronics will facilitate development and enable applica... Read More about Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells.

Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers (2021)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., …Wildman, R. D. (2021). Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. ACS Applied Materials and Interfaces, 13(33), 38969-38978. https://doi.org/10.1021/acsami.1c07850

Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue... Read More about Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers.

Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles (2021)
Journal Article
Trindade, G. F., Wang, F., Im, J., He, Y., Balogh, A., Scurr, D., …Roberts, C. J. (2021). Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles. Communications Materials, 2(1), Article 47. https://doi.org/10.1038/s43246-021-00151-0

Inkjet printing of metal nanoparticles allows for design flexibility, rapid processing and enables the 3D printing of functional electronic devices through co-deposition of multiple materials. However, the performance of printed devices, especially t... Read More about Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles.

Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles (2020)
Journal Article
Jain, A., Trindade, G. F., Hicks, J. M., Potts, J. C., Rahman, R., J. M. Hague, R., …Rawson, F. J. (2021). Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. Journal of Colloid and Interface Science, 587, 150-161. https://doi.org/10.1016/j.jcis.2020.12.025

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles (2020)
Other
Jain, A., Trindade, G., Hicks, J. M., Potts, J. C., Rahman, R., Hague, R., …Rawson, F. Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles.

Wireless Nanobioelectronics for Electrical Intracellular Sensing (2019)
Journal Article
Sanjuan-Alberte, P., Jain, A., Shaw, A. J., Abayzeed, S. A., Domínguez, R. F., Alea-Reyes, M. E., …Rawson, F. J. (2019). Wireless Nanobioelectronics for Electrical Intracellular Sensing. ACS Applied Nano Materials, 2(10), 6397-6408. https://doi.org/10.1021/acsanm.9b01374

For the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to enable modulation of chemistry inside of cells. Herein we report on an intracellular wireless elec... Read More about Wireless Nanobioelectronics for Electrical Intracellular Sensing.

Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior (2019)
Journal Article
Vaithilingam, J., Sanjuan‐Alberte, P., Campora, S., Rance, G. A., Jiang, L., Thorpe, J., …Rawson, F. J. (2019). Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior. Advanced Functional Materials, 29(38), Article 1902016. https://doi.org/10.1002/adfm.201902016

Biological structures control cell behavior via physical, chemical, electrical, and mechanical cues. Approaches that allow us to build devices that mimic these cues in a combinatorial way are lacking due to there being no suitable instructive materia... Read More about Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior.

High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations (2019)
Journal Article
Zhou, Z., Ruiz Cantu, L., Chen, X., Alexander, M. R., Roberts, C. J., Hague, R., …Wildman, R. (2019). High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations. Additive Manufacturing, 29, Article 100792. https://doi.org/10.1016/j.addma.2019.100792

Inkjet printing has been used as an Additive Manufacturing (AM) method to fabricate three-dimensional (3D) structures. However, a lack of materials suitable for inkjet printing poses one of the key challenges that impedes industry from fully adopting... Read More about High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations.

Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces (2019)
Journal Article
Sanjuan-Alberte, P., Saleh, E., Shaw, A. J., Lacalendola, N., Willmott, G., Vaithilingam, J., …Rawson, F. J. (2019). Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces. ACS Applied Materials and Interfaces, 11(9), 8928-8936. https://doi.org/10.1021/acsami.8b22075

There is a pressing need to advance our ability to construct three-dimensional (3D) functional bioelectronic interfaces. Additionally, to ease the transition to building cellular electronic systems, a remote approach to merge electrical components wi... Read More about Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces.

Chemical Imaging of Buried Interfaces in Organic-Inorganic Devices Using Focused Ion Beam-Time-of-Flight-Secondary-Ion Mass Spectrometry (2019)
Journal Article
Tiddia, M., Mihara, I., Seah, M. P., Trindade, G. F., Kollmer, F., Roberts, C. J., …Havelund, R. (2019). Chemical Imaging of Buried Interfaces in Organic-Inorganic Devices Using Focused Ion Beam-Time-of-Flight-Secondary-Ion Mass Spectrometry. ACS Applied Materials and Interfaces, 11(4), 4500-4506. https://doi.org/10.1021/acsami.8b15091

Copyright © 2019 American Chemical Society. Organic-inorganic hybrid materials enable the design and fabrication of new materials with enhanced properties. The interface between the organic and inorganic materials is often critical to the device's pe... Read More about Chemical Imaging of Buried Interfaces in Organic-Inorganic Devices Using Focused Ion Beam-Time-of-Flight-Secondary-Ion Mass Spectrometry.

Wireless bioelectronic nanosystems for intracellular communication (2018)
Other
Sanjuán-Alberte, P., Abayzeed, S. A., Fuentes-Domínguez, R., Alea-Reyesd, M. E., Clark, M., Hague, R., …Rawson, F. (2018). Wireless bioelectronic nanosystems for intracellular communication

In order for the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to both sense and actuate cell behaviour. Herein we report the first example of an innovativ... Read More about Wireless bioelectronic nanosystems for intracellular communication.

Electrochemically stimulating developments in bioelectronic medicine (2018)
Journal Article
Sanjuan-Alberte, P., Alexander, M. R., Hague, R. J., & Rawson, F. J. (2018). Electrochemically stimulating developments in bioelectronic medicine. Bioelectronic Medicine, 4(1), https://doi.org/10.1186/s42234-018-0001-z

Cellular homeostasis is in part controlled by biological generated electrical activity. By interfacing biology with electronic devices this electrical activity can be modulated to actuate cellular behaviour. There are current limitations in merging e... Read More about Electrochemically stimulating developments in bioelectronic medicine.

Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery (2018)
Journal Article
Louzao, I., Koch, B., Taresco, V., Ruiz Cantu, L., Irvine, D. J., Roberts, C. J., …Alexander, M. R. (in press). Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery. ACS Applied Materials and Interfaces, 10(8), https://doi.org/10.1021/acsami.7b15677

A robust discovery methodology is presented to identify novel biomaterials suitable for 3D printing. Currently the application of Additive Manufacturing is limited by the availability of functional inks, especially in the area of biomaterials-this me... Read More about Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery.