Research Repository

See what's under the surface


Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe (2018)
Journal Article
Balakrishnan, N., Steer, E. D., Smith, E. F., Kudrynskyi, Z. R., Kovalyuk, Z. D., Eaves, L., …Beton, P. H. (2018). Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Materials, 5(3), doi:10.1088/2053-1583/aac479. ISSN 2053-1583

We demonstrate that γ-InSe and the α, β and γ phases of In2Se3 can be grown epitaxially on ε-GaSe substrates using a physical vapour transport method. By exploiting the temperature gradient within the tube furnace, we can grow selectively different p... Read More

Engineering p-n junctions and bandgap tuning of InSe nanolayers by controlled oxidation (2017)
Journal Article
Balakrishnan, N., Kudrynskyi, Z. R., Smith, E. F., Fay, M. W., Makarovsky, O., Kovalyuk, Z. D., …Patanè, A. (2017). Engineering p-n junctions and bandgap tuning of InSe nanolayers by controlled oxidation. 2D Materials, 4(2), doi:10.1088/2053-1583/aa61e0. ISSN 2053-1583

Exploitation of two-dimensional (2D) van der Waals (vdW) crystals can be hindered by the deterioration of the crystal surface over time due to oxidation. On the other hand, the existence of a stable oxide at room temperature can offer prospects for s... Read More

Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport (2016)
Journal Article
Balakrishnan, N., Staddon, C. R., Smith, E. F., Stec, J., Gay, D., Mudd, G. W., …Beton, P. H. (in press). Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport. 2D Materials, 3(2), (1-8). doi:10.1088/2053-1583/3/2/025030. ISSN 2053-1583

We demonstrate that β-In2Se3 layers with thickness ranging from 2.8 – 100 nm can be grown on SiO2/Si, mica and graphite using a physical vapour transport method. The β-In2Se3 layers are chemically stable at room temperature and exhibit a blue-shift o... Read More