Skip to main content

Research Repository

Advanced Search

All Outputs (120)

Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study (2024)
Journal Article
Kalenderski, K., Dubern, J., Lewis-Lloyd, C., Jeffery, N., Heeb, S., Irvine, D. J., …Williams, P. (2024). Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study. Journal of Urology Open PLus, 2(1), Article e00005. https://doi.org/10.1097/JU9.0000000000000097

Purpose: Biofilm formation and biomineralization on urinary catheters may cause severe complications including infection and obstruction. Here, we describe an in vitro evaluation and prospective pilot clinical study of a silicone catheter coated with... Read More about Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study.

Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids (2024)
Journal Article
Suvannapruk, W., Fisher, L. E., Luckett, J. C., Edney, M. K., Kotowska, A. M., Kim, D., …Alexander, M. R. (in press). Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids. Advanced Science, https://doi.org/10.1101/2023.08.18.553860

A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in modulation of the host immune response and are the major cells responsible for persistent inflammatory reactions to... Read More about Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids.

Toward Comprehensive Analysis of the 3D Chemistry of Pseudomonas aeruginosa Biofilms (2023)
Journal Article
Kotowska, A. M., Zhang, J., Carabelli, A., Watts, J., Aylott, J. W., Gilmore, I. S., …Alexander, M. R. (2023). Toward Comprehensive Analysis of the 3D Chemistry of Pseudomonas aeruginosa Biofilms. Analytical Chemistry, 95(49), 18287-18294. https://doi.org/10.1021/acs.analchem.3c04443

Bacterial biofilms are structured communities consisting of cells enmeshed in a self-generated extracellular matrix usually attached to a surface. They contain diverse classes of molecules including polysaccharides, lipids, proteins, nucleic acids, a... Read More about Toward Comprehensive Analysis of the 3D Chemistry of Pseudomonas aeruginosa Biofilms.

Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model (2023)
Journal Article
Dooley, M., Luckett, J., Alexander, M. R., Matousek, P., Dehghani, H., Ghaemmaghami, A. M., & Notingher, I. (2023). Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model. Biomedical Optics Express, 14(12), 6592-6606. https://doi.org/10.1364/boe.512118

Diffuse Raman spectroscopy (DRS) allows subsurface molecular analysis of optically turbid samples. Numerical modeling of light propagation was used as a method for improving the design of an DRS instrument to maximize the signal to noise ratio (SNR)... Read More about Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model.

Optimisation of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in small animal model (2023)
Journal Article
Dooley, M., Luckett, J., Alexander, M. R., Matousek, P., Dehghani, H., Ghaemmaghami, A. M., & Notingher, I. (2023). Optimisation of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in small animal model. Biomedical Optics Express, 14(12), 6592-6606. https://doi.org/10.1364/BOE.512118

Diffuse Raman spectroscopy (DRS) allows subsurface molecular analysis of optically turbid samples. Numerical modelling of light propagation was used as a method for improving the design of an DRS instrument to maximize the signal to noise ratio (SNR)... Read More about Optimisation of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in small animal model.

A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection (2023)
Journal Article
Crawford, L. A., Cuzzucoli Crucitti, V., Stimpson, A., Morgan, C., Blake, J., Wildman, R. D., …Avery, S. V. (2023). A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection. Green Chemistry, 25(21), 8558-8569. https://doi.org/10.1039/d3gc01911j

Fungicidal compounds are actives widely used for crop protection from fungal infection, but they can also kill beneficial organisms, enter the food chain and promote resistant pathogen strains from overuse. Here we report the first field crop trial o... Read More about A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection.

Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS (2023)
Journal Article
Khateb, H., Hook, A. L., Kern, S., Watts, J. A., Singh, S., Jackson, D., …Alexander, M. R. (2023). Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS. Biointerphases, 18(3), Article 031007. https://doi.org/10.1116/6.0002604

Secondary ion mass spectrometry (SIMS) offers advantages over both liquid extraction mass spectrometry and matrix assisted laser desorption mass spectrometry in that it provides the direct in situ analysis of molecules and has the potential to preser... Read More about Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS.

Linear Binary Classifier to Predict Bacterial Biofilm Formation on Polyacrylates (2023)
Journal Article
Contreas, L., Hook, A. L., Winkler, D. A., Figueredo, G., Williams, P., Laughton, C. A., …Williams, P. M. (2023). Linear Binary Classifier to Predict Bacterial Biofilm Formation on Polyacrylates. ACS Applied Materials and Interfaces, 15(11), 14155-14163. https://doi.org/10.1021/acsami.2c23182

Bacterial infections are increasingly problematic due to the rise of antimicrobial resistance. Consequently, the rational design of materials naturally resistant to biofilm formation is an important strategy for preventing medical device-associated i... Read More about Linear Binary Classifier to Predict Bacterial Biofilm Formation on Polyacrylates.

Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF-SIMS and Self-Organizing maps (2023)
Journal Article
Wong, S. Y., Hook, A. L., Gardner, W., Chang, C., Mei, Y., Davies, M. C., …Pigram, P. J. (2023). Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF-SIMS and Self-Organizing maps. Advanced Materials Interfaces, 10(9), Article 2202334. https://doi.org/10.1002/admi.202202334

Biofilm formation is a major cause of hospital-acquired infections. Research into biofilm-resistant materials is therefore critical to reduce the frequency of these events. Polymer microarrays offer a high-throughput approach to enable the efficient... Read More about Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF-SIMS and Self-Organizing maps.

Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation (2023)
Journal Article
Dubern, J. F., Hook, A. L., Carabelli, A. M., Chang, C. Y., Lewis-Lloyd, C. A., Luckett, J. C., …Williams, P. (2023). Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation. Science Advances, 9(4), Article eadd7474. https://doi.org/10.1126/sciadv.add7474

Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming... Read More about Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation.

Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip (2023)
Journal Article
Vassey, M., Ma, L., Kämmerling, L., Mbadugha, C., Trindade, G. F., Figueredo, G. P., …Alexander, M. R. (2023). Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip. Matter, 6(3), 887-906. https://doi.org/10.1016/j.matt.2023.01.002

To design effective immunomodulatory implants, innate immune cell interactions at the surface of biomaterials need to be controlled and understood. The architectural design freedom of two-photon polymerization is used to produce arrays of surface-mou... Read More about Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip.

Identifying new biomarkers of aggressive Group 3 and SHH medulloblastoma using 3D hydrogel models, single cell RNA sequencing and 3D OrbiSIMS imaging (2023)
Journal Article
Linke, F., Johnson, J. E. C., Kern, S., Bennett, C. D., Lourdusamy, A., Lea, D., …Coyle, B. (2023). Identifying new biomarkers of aggressive Group 3 and SHH medulloblastoma using 3D hydrogel models, single cell RNA sequencing and 3D OrbiSIMS imaging. Acta Neuropathologica Communications, 11(1), Article 6. https://doi.org/10.1186/s40478-022-01496-4

The most common malignant brain tumour in children, medulloblastoma (MB), is subdivided into four clinically relevant molecular subgroups, although targeted therapy options informed by understanding of different cellular features are lacking. Here, b... Read More about Identifying new biomarkers of aggressive Group 3 and SHH medulloblastoma using 3D hydrogel models, single cell RNA sequencing and 3D OrbiSIMS imaging.

Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials (2023)
Journal Article
Cuzzucoli Crucitti, V., Ilchev, A., Moore, J. C., Fowler, H. R., Dubern, J., Sanni, O., …Irvine, D. J. (2023). Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials. Biomacromolecules, https://doi.org/10.1021/acs.biomac.2c00721

Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomon... Read More about Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials.

Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing (2022)
Journal Article
Latif, A., Fisher, L. E., Dundas, A. A., Crucitti, V. C., Imir, Z., Lawler, K., …Ghaemmaghami, A. M. (2022). Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing. Advanced Materials, Article 2208364. https://doi.org/10.1002/adma.202208364

Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involv... Read More about Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing.

Evaluation of the relative potential for contact and doffing transmission of SARS-CoV-2 by a range of personal protective equipment materials (2022)
Journal Article
Xue, X., Coleman, C. M., Duncan, J. D., Hook, A. L., Ball, J. K., Alexander, C., & Alexander, M. R. (2022). Evaluation of the relative potential for contact and doffing transmission of SARS-CoV-2 by a range of personal protective equipment materials. Scientific Reports, 12(1), Article 16654. https://doi.org/10.1038/s41598-022-20952-8

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—the causative agent of coronavirus disease 2019 (COVID-19)—has caused a global public health emergency. Personal protective equipment (PPE) is the primary defence against viral exposure in... Read More about Evaluation of the relative potential for contact and doffing transmission of SARS-CoV-2 by a range of personal protective equipment materials.

Feature importance in machine learning models: A fuzzy information fusion approach (2022)
Journal Article
Rengasamy, D., Mase, J. M., Kumar, A., Rothwell, B., Torres, M. T., Alexander, M. R., …Figueredo, G. P. (2022). Feature importance in machine learning models: A fuzzy information fusion approach. Neurocomputing, 511, 163-174. https://doi.org/10.1016/j.neucom.2022.09.053

With the widespread use of machine learning to support decision-making, it is increasingly important to verify and understand the reasons why a particular output is produced. Although post-training feature importance approaches assist this interpreta... Read More about Feature importance in machine learning models: A fuzzy information fusion approach.

Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype (2022)
Journal Article
Suvannapruk, W., Edney, M. K., Kim, D., Scurr, D. J., Ghaemmaghami, A. M., & Alexander, M. R. (2022). Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype. Analytical Chemistry, 94(26), 9389–9398. https://doi.org/10.1021/acs.analchem.2c01375

Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic... Read More about Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype.

Utilising micron scale 3D printed morphologies for particle adhesion reduction (2022)
Journal Article
Marsh, G. E., Bunker, M. J., Alexander, M. R., Wildman, R. D., Nicholas, M., & Roberts, C. J. (2022). Utilising micron scale 3D printed morphologies for particle adhesion reduction. Powder Technology, 404, Article 117418. https://doi.org/10.1016/j.powtec.2022.117418

In the pharmaceutical industry, the ability to improve the understanding of the effect of surface roughness on interparticulate interactions is critical. Dry powder inhalers often possess poor efficiency, as the powder formulations are inherently adh... Read More about Utilising micron scale 3D printed morphologies for particle adhesion reduction.

Elucidating the molecular landscape of the stratum corneum (2022)
Journal Article
Starr, N. J., Khan, M. H., Edney, M. K., Trindade, G. F., Kern, S., Pirkl, A., …Scurr, D. J. (2022). Elucidating the molecular landscape of the stratum corneum. Proceedings of the National Academy of Sciences, 119(12), Article e2114380119. https://doi.org/10.1073/pnas.2114380119

Characterization of the molecular structure of skin, especially the barrier layer, the stratum corneum, is a key research priority for generating understanding to improve diagnostics, aid pharmaceutical delivery, and prevent environmental damage. Our... Read More about Elucidating the molecular landscape of the stratum corneum.

Molecular Formula Prediction for Chemical Filtering of 3D OrbiSIMS Datasets (2022)
Journal Article
Edney, M. K., Kotowska, A. M., Spanu, M., Trindade, G. F., Wilmot, E., Reid, J., …Scurr, D. J. (2022). Molecular Formula Prediction for Chemical Filtering of 3D OrbiSIMS Datasets. Analytical Chemistry, 94(11), 4703–4711. https://doi.org/10.1021/acs.analchem.1c04898

Modern mass spectrometry techniques produce a wealth of spectral data, and although this is an advantage in terms of the richness of the information available, the volume and complexity of data can prevent a thorough interpretation to reach useful co... Read More about Molecular Formula Prediction for Chemical Filtering of 3D OrbiSIMS Datasets.