Skip to main content

Research Repository

Advanced Search

All Outputs (107)

Glycerol-based sustainably sourced resin for volumetric printing (2024)
Journal Article
Krumins, E., Lentz, J. C., Sutcliffe, B., Sohaib, A., Jacob, P. L., Brugnoli, B., …Taresco, V. (2024). Glycerol-based sustainably sourced resin for volumetric printing. Green Chemistry, 26(3), 1345-1355. https://doi.org/10.1039/d3gc03607c

Volumetric Additive Manufacturing (VAM) represents a revolutionary advancement in the field of Additive Manufacturing, as it allows for the creation of objects in a single, cohesive process, rather than in a layer-by-layer approach. This innovative t... Read More about Glycerol-based sustainably sourced resin for volumetric printing.

Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution (2023)
Journal Article
Nelson-Dummett, O., Rivers, G., Gilani, N., Simonelli, M., Tuck, C. J., Wildman, R. D., …Turyanska, L. (2024). Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution. Additive Manufacturing Letters, 8, Article 100185. https://doi.org/10.1016/j.addlet.2023.100185

Drop-on-Demand additive manufacturing could offer a facile solution for scalable on-site manufacturing. With an increasing number of functional materials available for this technology, there are growing opportunities for applications, such as electro... Read More about Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution.

Co-assembling living material as an in vitro lung epithelial infection model (2023)
Journal Article
Wu, Y., Romero, M., Robertson, S. N., Fenn, S., Fisher, L., Willingham, I., …Mata, A. (2024). Co-assembling living material as an in vitro lung epithelial infection model. Matter, 7(1), 216-236. https://doi.org/10.1016/j.matt.2023.10.029

Biofilms are robust living 3D materials that play key roles in nature but also cause major problems, such as tolerance to antibiotic treatment. Recreation of these living structures in vitro is critical to understand their biology and develop solutio... Read More about Co-assembling living material as an in vitro lung epithelial infection model.

Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics (2023)
Journal Article
Bastola, A., He, Y., Im, J., Rivers, G., Wang, F., Worsley, R., …Turyanska, L. (2023). Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Materials Today Electronics, 6, Article 100058. https://doi.org/10.1016/j.mtelec.2023.100058

Inkjet printing offers a facile route for manufacturing the next generation of electronic devices, by combining the design freedom of additive manufacturing technologies with tuneable properties of functional materials and opportunities for their int... Read More about Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics.

A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material (2023)
Journal Article
Hu, Y., Rivers, G., Weir, M. P., Amabilino, D. B., Tuck, C. J., Wildman, R. D., …Woodward, S. (2023). A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material. Electronic Materials Letters, https://doi.org/10.1007/s13391-023-00454-z

We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)2 and propionic acid at a 1:1 stoichio... Read More about A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material.

A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection (2023)
Journal Article
Crawford, L. A., Cuzzucoli Crucitti, V., Stimpson, A., Morgan, C., Blake, J., Wildman, R. D., …Avery, S. V. (2023). A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection. Green Chemistry, 25(21), 8558-8569. https://doi.org/10.1039/d3gc01911j

Fungicidal compounds are actives widely used for crop protection from fungal infection, but they can also kill beneficial organisms, enter the food chain and promote resistant pathogen strains from overuse. Here we report the first field crop trial o... Read More about A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection.

Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for in Vitro Models. (2023)
Journal Article
Lewns, F. K., Tsigkou, O., Cox, L. R., Wildman, R. D., Grover, L. M., & Poologasundarampillai, G. (2023). Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for in Vitro Models. Advanced Materials, Article 2301670. https://doi.org/10.1002/adma.202301670

Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone,... Read More about Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for in Vitro Models..

Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents (2023)
Journal Article
Rivers, G., Austin, J. S., He, Y., Thompson, A., Gilani, N., Roberts, N., …Turyanska, L. (2023). Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents. Additive Manufacturing, 66, Article 103452. https://doi.org/10.1016/j.addma.2023.103452

Development of conductive polymer ink formulations with reliable jetting stability and physical properties could offer sustainable routes for scaling-up the 3D-printing of electronics. We report a new poly(3,4-ethylenedioxythiophene) polystyrene sulp... Read More about Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents.

Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip (2023)
Journal Article
Vassey, M., Ma, L., Kämmerling, L., Mbadugha, C., Trindade, G. F., Figueredo, G. P., …Alexander, M. R. (2023). Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip. Matter, 6(3), 887-906. https://doi.org/10.1016/j.matt.2023.01.002

To design effective immunomodulatory implants, innate immune cell interactions at the surface of biomaterials need to be controlled and understood. The architectural design freedom of two-photon polymerization is used to produce arrays of surface-mou... Read More about Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip.

Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing (2023)
Journal Article
Im, J., Liu, Y., Hu, Q., Trindade, G. F., Parmenter, C., Fay, M., …Turyanska, L. (2023). Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing. Advanced Functional Materials, 33(39), Article 2211920. https://doi.org/10.1002/adfm.202211920

This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a singl... Read More about Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing.

Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials (2023)
Journal Article
Cuzzucoli Crucitti, V., Ilchev, A., Moore, J. C., Fowler, H. R., Dubern, J., Sanni, O., …Irvine, D. J. (2023). Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials. Biomacromolecules, https://doi.org/10.1021/acs.biomac.2c00721

Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomon... Read More about Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials.

Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing (2022)
Journal Article
Latif, A., Fisher, L. E., Dundas, A. A., Crucitti, V. C., Imir, Z., Lawler, K., …Ghaemmaghami, A. M. (2022). Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing. Advanced Materials, Article 2208364. https://doi.org/10.1002/adma.202208364

Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involv... Read More about Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing.

Utilising micron scale 3D printed morphologies for particle adhesion reduction (2022)
Journal Article
Marsh, G. E., Bunker, M. J., Alexander, M. R., Wildman, R. D., Nicholas, M., & Roberts, C. J. (2022). Utilising micron scale 3D printed morphologies for particle adhesion reduction. Powder Technology, 404, Article 117418. https://doi.org/10.1016/j.powtec.2022.117418

In the pharmaceutical industry, the ability to improve the understanding of the effect of surface roughness on interparticulate interactions is critical. Dry powder inhalers often possess poor efficiency, as the powder formulations are inherently adh... Read More about Utilising micron scale 3D printed morphologies for particle adhesion reduction.

Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes (2022)
Journal Article
Im, J., Trindade, G. F., Quach, T. T., Sohaib, A., Wang, F., Austin, J., …Tuck, C. (2022). Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes. ACS Applied Nano Materials, 5(5), 6708-6716. https://doi.org/10.1021/acsanm.2c00742

The development of conductive inks is required to enable additive manufacturing of electronic components and devices. A gold nanoparticle (AuNP) ink is of particular interest due to its high electrical conductivity, chemical stability, and biocompati... Read More about Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes.

3D reactive inkjet printing of bisphenol A-polycarbonate (2022)
Journal Article
Qian, Q., Kamps, J. H., Price, B., Gu, H., Wildman, R., Hague, R., …Tuck, C. (2022). 3D reactive inkjet printing of bisphenol A-polycarbonate. Additive Manufacturing, 54, Article 102745. https://doi.org/10.1016/j.addma.2022.102745

Additive Manufacturing (AM) techniques have gained extensive attention recently as they are able to directly produce 3D parts utilising a layer-by-layer manner. Inkjet printing is one such technique which can produce micron-scale features but is gene... Read More about 3D reactive inkjet printing of bisphenol A-polycarbonate.

Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers” (2022)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., …Wildman, R. D. (2022). Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers”. ACS Applied Materials and Interfaces, 14(6), 8654. https://doi.org/10.1021/acsami.2c00035

The chemical structure of the drug trandolapril has been corrected in Figure 4c. The conclusions of the work have not been affected by this correction. (Figure present).

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing (2021)
Journal Article
Hu, Q., Rance, G. A., Trindade, G. F., Pervan, D., Jiang, L., Foerster, A., …Wildman, R. D. (2022). The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing. Additive Manufacturing, 51, Article 102575. https://doi.org/10.1016/j.addma.2021.102575

Two-photon polymerisation (2PP) based additive manufacturing has emerged as a powerful technology to fabricate complex three-dimensional micro- and nanoscale architectures. However, a comprehensive understanding of the effect of printing parameters o... Read More about The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing.

Application of microfluidic systems in modelling impacts of environmental structure on stress-sensing by individual microbial cells (2021)
Journal Article
Harvey, H. J., Chubynsky, M. V., Sprittles, J. E., Shor, L. M., Mooney, S. J., Wildman, R. D., & Avery, S. V. (2022). Application of microfluidic systems in modelling impacts of environmental structure on stress-sensing by individual microbial cells. Computational and Structural Biotechnology Journal, 20, 128-138. https://doi.org/10.1016/j.csbj.2021.11.039

Environmental structure describes physical structure that can determine heterogenous spatial distribution of biotic and abiotic (nutrients, stressors etc.) components of a microorganism's microenvironment. This study investigated the impact of microm... Read More about Application of microfluidic systems in modelling impacts of environmental structure on stress-sensing by individual microbial cells.

Exploiting the fundamentals of biological organization for the advancement of biofabrication (2021)
Journal Article
Hill, J., Wildman, R., & Mata, A. (2022). Exploiting the fundamentals of biological organization for the advancement of biofabrication. Current Opinion in Biotechnology, 74, 42-54. https://doi.org/10.1016/j.copbio.2021.10.016

The field of biofabrication continues to progress, offering higher levels of spatial control, reproducibility, and functionality. However, we remain far from recapitulating what nature has achieved. Biological systems such as tissues and organs are a... Read More about Exploiting the fundamentals of biological organization for the advancement of biofabrication.