Skip to main content

Research Repository

Advanced Search

All Outputs (10)

Visual tracking for the recovery of multiple interacting plant root systems from X-ray ?CT images (2015)
Journal Article
Mairhofer, S., Johnson, J., Sturrock, C., Bennett, M. J., Mooney, S. J., & Pridmore, T. P. (2016). Visual tracking for the recovery of multiple interacting plant root systems from X-ray ?CT images. Machine Vision and Applications, 27(5), 721-734. https://doi.org/10.1007/s00138-015-0733-7

We propose a visual object tracking framework for the extraction of multiple interacting plant root systems from three-dimensional X-ray micro computed tomography images of plants grown in soil. Our method is based on a level set framework guided by... Read More about Visual tracking for the recovery of multiple interacting plant root systems from X-ray ?CT images.

Extracting multiple interacting root systems using X-ray microcomputed tomography (2015)
Journal Article
Mairhofer, S., Sturrock, C., Mooney, S. J., Pridmore, T. P., & Bennett, M. J. (2015). Extracting multiple interacting root systems using X-ray microcomputed tomography. Plant Journal, 84(5), 1034-1043. https://doi.org/10.1111/tpj.13047

© 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. Root system interactions and competition for resources are active areas of research that contribute to our understanding of how roots perc... Read More about Extracting multiple interacting root systems using X-ray microcomputed tomography.

The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana (2015)
Journal Article
Voß, U., Wilson, M. H., Kenobi, K., Gould, P. D., Robertson, F. C., Peer, W. A., …Bennett, M. J. (2015). The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 6(1), Article 7641. https://doi.org/10.1038/ncomms8641

The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence.... Read More about The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana.

Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling (2015)
Journal Article
Daly, K. R., Mooney, S. J., Bennett, M. J., Crout, N. M., Roose, T., & Tracy, S. R. (2015). Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling. Journal of Experimental Botany, 66(8), 2305-2314. https://doi.org/10.1093/jxb/eru509

© 2015 © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. Th... Read More about Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling.

Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone (2015)
Journal Article
Wilson, M. H., Holman, T. J., Sørensen, I., Cancho-Sanchez, E., Wells, D. M., Swarup, R., …Hodgman, T. C. (2015). Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Frontiers in Cell and Developmental Biology, 3(FEB), Article 10. https://doi.org/10.3389/fcell.2015.00010

Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth an... Read More about Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone.

A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants (2015)
Journal Article
Larrieu, A., Champion, A., Legrand, J., Lavenus, J., Mast, D., Brunoud, G., …Laplaze, L. (2015). A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Communications, 6(1), https://doi.org/10.1038/ncomms7043

Activated forms of jasmonic acid (JA) are central signals coordinating plant responses to stresses, yet tools to analyse their spatial and temporal distribution are lacking. Here we describe a JA perception biosensor termed Jas9-VENUS that allows the... Read More about A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants.

Plant embryogenesis requires AUX/LAX-mediated auxin influx (2015)
Journal Article
Robert, H. S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., …Friml, J. (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development, 142(4), 702-711. https://doi.org/10.1242/dev.115832

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during emb... Read More about Plant embryogenesis requires AUX/LAX-mediated auxin influx.

Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat (2015)
Journal Article
Atkinson, J. A., Wingen, L. U., Griffiths, M., Pound, M. P., Gaju, O., Foulkes, M. J., …Wells, D. M. (2015). Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. Journal of Experimental Botany, 66(8), 2283-2292. https://doi.org/10.1093/jxb/erv006

Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen c... Read More about Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat.

Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones (2015)
Journal Article
Lavenus, J., Goh, T., Guyomarc’h, S., Hill, K., Lucas, M., Voß, U., …Bennett, M. J. (2015). Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. Plant Cell, 27(5), 1368-1388. https://doi.org/10.1105/tpc.114.132993

A large number of genes involved in lateral root (LR) organogenesis have been identified over the last decade using forward and reverse genetic approaches in Arabidopsis thaliana. Nevertheless, how these genes interact to form a LR regulatory network... Read More about Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones.

Auxin influx importers modulate serration along the leaf margin (2015)
Journal Article
Kasprzewska, A., Swarup, R., Carter, R., Bennett, M., Monk, N., Hobbs, J. K., & Fleming, A. (2015). Auxin influx importers modulate serration along the leaf margin. Plant Journal, 83(4), 705-718. https://doi.org/10.1111/tpj.12921

Leaf shape in Arabidopsis is modulated by patterning events in the margin that utilize a PIN‐based auxin exporter/CUC2 transcription factor system to define regions of promotion and retardation of growth, leading to morphogenesis. In addition to auxi... Read More about Auxin influx importers modulate serration along the leaf margin.