Skip to main content

Research Repository

Advanced Search

All Outputs (12)

Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy” (2023)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D., Lim, K., …Bradshaw, T. D. (2024). Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy”. ACS Omega, 9(1), Article 2012. https://doi.org/10.1021/acsomega.3c09291

Neil R. Thomas was added as an author. The change in authorship is reflected in the authorship of this Correction.

The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing (2021)
Journal Article
Hu, Q., Rance, G. A., Trindade, G. F., Pervan, D., Jiang, L., Foerster, A., …Wildman, R. D. (2022). The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing. Additive Manufacturing, 51, Article 102575. https://doi.org/10.1016/j.addma.2021.102575

Two-photon polymerisation (2PP) based additive manufacturing has emerged as a powerful technology to fabricate complex three-dimensional micro- and nanoscale architectures. However, a comprehensive understanding of the effect of printing parameters o... Read More about The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing.

Near-infrared PbS quantum dots functionalized with affibodies and ZnPP for targeted imaging and therapeutic applications (2021)
Journal Article
Al-Ani, A. W., Zamberlan, F., Ferreira, L., Bradshaw, T. D., Thomas, N. R., & Turyanska, L. (2021). Near-infrared PbS quantum dots functionalized with affibodies and ZnPP for targeted imaging and therapeutic applications. Nano Express, 2(4), Article 040005. https://doi.org/10.1088/2632-959x/ac33b8

We report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker... Read More about Near-infrared PbS quantum dots functionalized with affibodies and ZnPP for targeted imaging and therapeutic applications.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery (2019)
Journal Article
Breen, A. F., Scurr, D., Cassioli, M. L., Wells, G., Thomas, N. R., Zhang, J., …Bradshaw, T. D. (2019). Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery. International Journal of Nanomedicine, 14, 9525-9534. https://doi.org/10.2147/IJN.S226293

Introduction: Advancment of novel anticancer drugs into clinic is frequently halted by their lack of solubility, reduced stability under physiological conditions, and non-specific uptake by normal tissues, causing systemic toxicity. Their progress to... Read More about Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery.

In search of effective therapies to overcome resistance to Temozolomide in brain tumours (2019)
Journal Article
Grundy, R., Bouzinab, K., Summers, H., Zhang, J., Stevens, M. F. G., Moody, C. J., …Bradshaw, T. D. (2019). In search of effective therapies to overcome resistance to Temozolomide in brain tumours. Cancer Drug Resistance, 2(4), 1018-1031. https://doi.org/10.20517/cdr.2019.64

Glioblastoma multiforme is the most common and lethal brain tumour-type. The current standard of care includes Temozolomide (TMZ) chemotherapy. However, inherent and acquired resistance to TMZ thwart successful treatment. The direct repair protein me... Read More about In search of effective therapies to overcome resistance to Temozolomide in brain tumours.

Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells (2019)
Journal Article
Liu, Z., Turyanska, L., Zamberlan, F., Pacifico, S., Bradshaw, T. D., Moro, F., …Thomas, N. R. (2019). Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells. Nanotechnology, 30(50), Article 505102. https://doi.org/10.1088/1361-6528/ab437c

We report on the synthesis of water-soluble gold nanoclusters capped with polyethylene glycol (PEG)-based ligands and further functionalized with folic acid for specific cellular uptake. The dihydrolipoic acid-PEG-based ligands terminated with -OMe,... Read More about Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells.

Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN (2019)
Journal Article
Zhang, C., Turyanska, L., Cao, H., Zhao, L., Fay, M. W., Temperton, R., …Patanè, A. (2019). Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN. Nanoscale, 11(28), 13450-13457. https://doi.org/10.1039/C9NR03707A

Despite important advances in the synthesis of inorganic perovskite nanocrystals (NCs), the long-term instability and degradation of their quantum yield (QY) over time need to be addressed to enable the further development and exploitation of these n... Read More about Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN.

Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging (2018)
Journal Article
Zamberlan, F., Turyanska, L., Patanè, A., Liu, Z., Williams, H., Fay, M., …Grabowska, A. (in press). Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging. Journal of Materials Chemistry B, 6, https://doi.org/10.1039/c7tb02912h

The short shelf-life of water-soluble quantum dots (QDs) due to colloidal instability represents a major drawback to their exploitation. This work examines the colloidal stability of PbS nanoparticles capped with dihydrolipoic acid–polyethylene glyco... Read More about Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging.

Developing Mn-doped lead sulfide quantum dots for MRI labels (2016)
Journal Article
Turyanska, L., Moro, F., Patanè, A., Barr, J., Köckenberger, W., Taylor, A., …Thomas, N. R. (2016). Developing Mn-doped lead sulfide quantum dots for MRI labels. Journal of Materials Chemistry B, 4(42), 6797-6802. https://doi.org/10.1039/c6tb02574a

Magnetic interactions of Mn2+ions in lead sulfide (PbS) nanocrystals with protons in water are probed by NMR and MRI. A thin layer of capping molecules enables free solvent diffusion to the nanocrystal surface resulting in a decrease of proton relaxa... Read More about Developing Mn-doped lead sulfide quantum dots for MRI labels.

Ligand-Induced Control of Photoconductive Gain and Doping in a Hybrid Graphene–Quantum Dot Transistor (2015)
Journal Article
Turyanska, L., Makarovsky, O., Svatek, S. A., Beton, P. H., Mellor, C. J., Patanè, A., …Wilson, N. R. (2015). Ligand-Induced Control of Photoconductive Gain and Doping in a Hybrid Graphene–Quantum Dot Transistor. Advanced Electronic Materials, 1(7), 1500062. https://doi.org/10.1002/aelm.201500062

In graphene devices decorated with a layer of near-infrared colloidal PbS quantum dots (QDs), the choice of the QD capping ligands and the integrity of the QD layer have a strong influence on the doping, carrier mobility, and photoresponse. By using... Read More about Ligand-Induced Control of Photoconductive Gain and Doping in a Hybrid Graphene–Quantum Dot Transistor.