Skip to main content

Research Repository

Advanced Search

All Outputs (13)

Elementary effects for models with dimensional inputs of arbitrary type and range: Scaling and trajectory generation (2023)
Journal Article
Rutjens, R. J., Band, L. R., Jones, M. D., & Owen, M. R. (2023). Elementary effects for models with dimensional inputs of arbitrary type and range: Scaling and trajectory generation. PLoS ONE, 18(10), Article e0293344. https://doi.org/10.1371/journal.pone.0293344

The Elementary Effects method is a global sensitivity analysis approach for identifying (un)important parameters in a model. However, it has almost exclusively been used where inputs are dimensionless and take values on [0, 1]. Here, we consider mode... Read More about Elementary effects for models with dimensional inputs of arbitrary type and range: Scaling and trajectory generation.

Modelling how plant cell-cycle progression leads to cell size regulation (2023)
Journal Article
Williamson, D., Tasker-Brown, W., Murray, J., Jones, A. R., & Band, L. R. (2023). Modelling how plant cell-cycle progression leads to cell size regulation. PLoS Computational Biology, 19(10), Article e1011503. https://doi.org/10.1371/journal.pcbi.1011503

Populations of cells typically maintain a consistent size, despite cell division rarely being precisely symmetrical. Therefore, cells must possess a mechanism of “size control”, whereby the cell volume at birth affects cell-cycle progression. While s... Read More about Modelling how plant cell-cycle progression leads to cell size regulation.

Multiscale asymptotic analysis reveals how cell growth and subcellular compartments affect tissue-scale hormone transport (2023)
Journal Article
Kiradjiev, K. B., & Band, L. R. (2023). Multiscale asymptotic analysis reveals how cell growth and subcellular compartments affect tissue-scale hormone transport. Bulletin of Mathematical Biology, 85, Article 101. https://doi.org/10.1007/s11538-023-01199-4

Determining how cell-scale processes lead to tissue-scale patterns is key to understanding how hormones and morphogens are distributed within biological tissues and control developmental processes. In this article, we use multiscale asymptotic analys... Read More about Multiscale asymptotic analysis reveals how cell growth and subcellular compartments affect tissue-scale hormone transport.

Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis (2023)
Journal Article
Binenbaum, J., Wulff, N., Camut, L., Kiradjiev, K., Anfang, M., Tal, I., …Shani, E. (2023). Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. Nature Plants, 9, 785-802. https://doi.org/10.1038/s41477-023-01391-3

The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRAT... Read More about Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis.

Long-distance hormone transport via the phloem (2023)
Journal Article
Collis, H. L., Owen, M. R., & Band, L. R. (2023). Long-distance hormone transport via the phloem. Journal of Theoretical Biology, 562, Article 111415. https://doi.org/10.1016/j.jtbi.2023.111415

Several key plant hormones are synthesised in the shoot and are advected within the phloem to the root tip. In the root tip, these hormones regulate growth and developmental processes, and responses to environmental cues. However, we lack understandi... Read More about Long-distance hormone transport via the phloem.

In silico evidence for the utility of parsimonious root phenotypes for improved vegetative growth and carbon sequestration under drought (2022)
Journal Article
Schäfer, E. D., Ajmera, I., Farcot, E., Owen, M. R., Band, L. R., & Lynch, J. P. (2022). In silico evidence for the utility of parsimonious root phenotypes for improved vegetative growth and carbon sequestration under drought. Frontiers in Plant Science, 13, Article 1010165. https://doi.org/10.3389/fpls.2022.1010165

Drought is a primary constraint to crop yields and climate change is expected to increase the frequency and severity of drought stress in the future. It has been hypothesized that crops can be made more resistant to drought and better able to sequest... Read More about In silico evidence for the utility of parsimonious root phenotypes for improved vegetative growth and carbon sequestration under drought.

Uncertainty and error in SARS-CoV-2 epidemiological parameters inferred from population-level epidemic models (2022)
Journal Article
Whittaker, D. G., Herrera-Reyes, A. D., Hendrix, M., Owen, M. R., Band, L. R., Mirams, G. R., …Preston, S. P. (2023). Uncertainty and error in SARS-CoV-2 epidemiological parameters inferred from population-level epidemic models. Journal of Theoretical Biology, 558, Article 111337. https://doi.org/10.1016/j.jtbi.2022.111337

During the SARS-CoV2 pandemic, epidemic models have been central to policy-making. Public health responses have been shaped by model-based projections and inferences, especially related to the impact of various non-pharmaceutical interventions. Accom... Read More about Uncertainty and error in SARS-CoV-2 epidemiological parameters inferred from population-level epidemic models.

Modeling root loss reveals impacts on nutrient uptake and crop development (2022)
Journal Article
Schäfer, E. D., Owen, M. R., Band, L. R., Farcot, E., Bennett, M. J., & Lynch, J. P. (2022). Modeling root loss reveals impacts on nutrient uptake and crop development. Plant Physiology, 190(4), 2260-2278. https://doi.org/10.1093/plphys/kiac405

Abstract Despite the widespread prevalence of root loss in plants, its effects on crop productivity are not fully understood. While root loss reduces the capacity of plants to take up water and nutrients from the soil, it may provide benefits by decr... Read More about Modeling root loss reveals impacts on nutrient uptake and crop development.

Modelling reveals post-transcriptional regulation of GA metabolism enzymes in response to drought and cold (2022)
Journal Article
Band, L. R., Nelissen, H., Preston, S. P., Rymen, B., Prinsen, E., Abd Elgawad, H., & Beemster, G. T. S. (2022). Modelling reveals post-transcriptional regulation of GA metabolism enzymes in response to drought and cold. Proceedings of the National Academy of Sciences, 119(31), Article e2121288119. https://doi.org/10.1073/pnas.2121288119

The hormone gibberellin (GA) controls plant growth and regulates growth responses to environmental stress. In monocotyledonous leaves, GA controls growth by regulating division-zone size. We used a systems approach to investigate the establishment of... Read More about Modelling reveals post-transcriptional regulation of GA metabolism enzymes in response to drought and cold.

Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots (2021)
Journal Article
Rizza, A., Tang, B., Stanley, C. E., Grossmann, G., Owen, M. R., Jones, A. M., & Band, L. R. (2021). Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots. Proceedings of the National Academy of Sciences, 118(8), Article e1921960118. https://doi.org/10.1073/pnas.1921960118

Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regula... Read More about Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots.

Parameter inference to motivate asymptotic model reduction: an analysis of the gibberellin biosynthesis pathway (2018)
Journal Article
Band, L. R., & Preston, S. P. (2018). Parameter inference to motivate asymptotic model reduction: an analysis of the gibberellin biosynthesis pathway. Journal of Theoretical Biology, 457, 66-78. https://doi.org/10.1016/j.jtbi.2018.05.028

Developing effective strategies to use models in conjunction with experimental data is essential to understand the dynamics of biological regulatory networks. In this study, we demonstrate how combining parameter estimation with asymptotic analysis c... Read More about Parameter inference to motivate asymptotic model reduction: an analysis of the gibberellin biosynthesis pathway.

Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis (2016)
Journal Article
Ferguson, A., Pearce, S., Band, L. R., Yang, C., Ferjentsikova, I., King, J., …Wilson, Z. A. (in press). Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. New Phytologist, 213, https://doi.org/10.1111/nph.14200

Viable pollen is essential for plant reproduction and crop yield. Its production requires coordinated expression at specific stages during anther development, involving early meiosis-associated events and late pollen wall formation. The ABORTED MICRO... Read More about Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis.

Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis (2016)
Journal Article
Mellor, N. L., Band, L. R., Pěnčík, A., Novak, O., Rashed, A., Holman, T., …Owen, M. R. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, 113(39), 11022-11027. https://doi.org/10.1073/pnas.1604458113

Auxin is a key hormone regulating plant growth and development. We combine experiments and mathematical modeling to reveal how auxin levels are maintained via feedback regulation of genes encoding key metabolic enzymes. We describe how regulation of... Read More about Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.