Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Spatial complementarity and the coexistence of species (2014)
Journal Article
Velázquez, J., Garrahan, J. P., & Eichhorn, M. P. (2014). Spatial complementarity and the coexistence of species. PLoS ONE, 9(12), Article e114979. https://doi.org/10.1371/journal.pone.0114979

© 2014 Velázquez et al. Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each spe... Read More about Spatial complementarity and the coexistence of species.

Universal nonequilibrium properties of dissipative rydberg gases (2014)
Journal Article
Marcuzzi, M., Levi, E., Diehl, S., Garrahan, J. P., & Lesanovsky, I. (2014). Universal nonequilibrium properties of dissipative rydberg gases. Physical Review Letters, 113(21), Article 210401. https://doi.org/10.1103/PhysRevLett.113.210401

© 2014 American Physical Society. We investigate the out-of-equilibrium behavior of a dissipative gas of Rydberg atoms that features a dynamical transition between two stationary states characterized by different excitation densities. We determine th... Read More about Universal nonequilibrium properties of dissipative rydberg gases.

Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation (2014)
Journal Article
Lesanovsky, I., & Garrahan, J. (2014). Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation. Physical Review A, 90(1), 1-5. doi:10.1103/PhysRevA.90.011603

The nonequilibrium dynamics of a gas of cold atoms in which Rydberg states are off-resonantly excited is studied in the presence of noise. The interplay between interaction and off-resonant excitation leads to an initial dynamics where aggregates of... Read More about Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation.

Common Physical Framework Explains Phase Behavior and Dynamics of Atomic, Molecular, and Polymeric Network Formers (2014)
Journal Article
Whitelam, S., Tamblyn, I., Haxton, T. K., Wieland, M. B., Champness, N. R., Garrahan, J. P., & Beton, P. H. (2014). Common Physical Framework Explains Phase Behavior and Dynamics of Atomic, Molecular, and Polymeric Network Formers. Physical Review X, 4(1), Article 011044. https://doi.org/10.1103/PhysRevX.4.011044

We show that the self-assembly of a diverse collection of building blocks can be understood within a common physical framework. These building blocks, which form periodic honeycomb networks and nonperiodic variants thereof, range in size from atoms t... Read More about Common Physical Framework Explains Phase Behavior and Dynamics of Atomic, Molecular, and Polymeric Network Formers.