Skip to main content

Research Repository

See what's under the surface


Collectively enhanced chiral photon emission from an atomic array near a nanofiber (2020)
Journal Article
Jones, R., Buonaiuto, G., Lang, B., Lesanovsky, I., & Olmos, B. (in press). Collectively enhanced chiral photon emission from an atomic array near a nanofiber. Physical Review Letters,

Emitter ensembles interact collectively with the radiation field. In the case of a one-dimensional array of atoms near a nanofiber, this collective light-matter interaction does not only lead to an increased photon coupling to the guided modes within... Read More about Collectively enhanced chiral photon emission from an atomic array near a nanofiber.

Engineering non-binary Rydberg interactions via electron-phonon coupling (2020)
Journal Article
Gambetta, F. M., Li, W., Schmidt-Kaler, F., & Lesanovsky, I. (in press). Engineering non-binary Rydberg interactions via electron-phonon coupling. Physical Review Letters,

Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezers arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms a... Read More about Engineering non-binary Rydberg interactions via electron-phonon coupling.

Classical stochastic discrete time crystals (2019)
Journal Article
Gambetta, F. M., Carollo, F., Lazarides, A., Lesanovsky, I., & Garrahan, J. P. (2019). Classical stochastic discrete time crystals. Physical Review E, 100(6), https://doi.org/10.1103/PhysRevE.100.060105

© 2019 American Physical Society. We describe a general and simple paradigm for discrete time crystals (DTCs), systems with a stable subharmonic response to an external driving field, in a classical thermal setting. We consider, specifically, an Isin... Read More about Classical stochastic discrete time crystals.

Dynamics of strongly coupled disordered dissipative spin-boson systems (2019)
Journal Article
Lesanovsky, I., Fiorelli, E., Rotondo, P., Carollo, F., & Marcuzzi, M. (in press). Dynamics of strongly coupled disordered dissipative spin-boson systems. Physical Review Research,

Spin-boson Hamiltonians are an effective description for numerous quantum few-and many-body systems such as atoms coupled to cavity modes, quantum electrodynamics in circuits and trapped ion systems. While reaching the limit of strong coupling is pos... Read More about Dynamics of strongly coupled disordered dissipative spin-boson systems.

Dynamical creation and detection of entangled many-body states in a chiral atom chain (2019)
Journal Article
Buonaiuto, G., Jones, R., Olmos Sanchez, B., & Lesanovsky, I. (2019). Dynamical creation and detection of entangled many-body states in a chiral atom chain. New Journal of Physics, 21(11), https://doi.org/10.1088/1367-2630/ab4f50

Open quantum systems with chiral interactions can be realized by coupling atoms to guided radiation modes in photonic waveguides or optical fibres. In their steady state these systems can feature intricate many-body phases such as entangled dark stat... Read More about Dynamical creation and detection of entangled many-body states in a chiral atom chain.

Shuttling of Rydberg ions for fast entangling operations (2019)
Journal Article
VOGEL, J., LI, W., MOKHBERI, A., LESANOVSKY, I., & SCHMIDT-KALER, F. (2019). Shuttling of Rydberg ions for fast entangling operations. Physical Review Letters, 123, https://doi.org/10.1103/PhysRevLett.123.153603

We introduce a scheme to entangle Rydberg ions in a linear ion crystal, using the high electric polarizability of the Rydberg electronic states in combination with mutual Coulomb coupling of ions that establishes common modes of motion. After laser i... Read More about Shuttling of Rydberg ions for fast entangling operations.

Numerical Simulation of Critical Dissipative Non-Equilibrium Quantum Systems with an Absorbing State (2019)
Journal Article
Gillman, E., Carollo, F., & Lesanovsky, I. (2019). Numerical Simulation of Critical Dissipative Non-Equilibrium Quantum Systems with an Absorbing State. New Journal of Physics, 21(9), https://doi.org/10.1088/1367-2630/ab43b0

The simulation of out-of-equilibrium dissipative quantum many body systems is a problem of fundamental interest to a number of fields in physics, ranging from condensed matter to cosmology. For unitary systems, tensor network methods have proved succ... Read More about Numerical Simulation of Critical Dissipative Non-Equilibrium Quantum Systems with an Absorbing State.

Critical behavior of the quantum contact process in one dimension (2019)
Journal Article
Carollo, F., Gillman, E., Weimer, H., & Lesanovsky, I. (2019). Critical behavior of the quantum contact process in one dimension. Physical Review Letters, 123(10), https://doi.org/10.1103/PhysRevLett.123.100604

The contact process is a paradigmatic classical stochastic system displaying critical behavior even in one dimension. It features a non-equilibrium phase transition into an absorbing state that has been widely investigated and shown to belong to the... Read More about Critical behavior of the quantum contact process in one dimension.

Dressed dense atomic gases (2019)
Journal Article
Lesanovsky, I., Olmos, B., Guerin, W., & Kaiser, R. (2019). Dressed dense atomic gases. Physical Review A, 100(2), https://doi.org/10.1103/PhysRevA.100.021401

The interaction between atomic transition dipoles and photons leads to the formation of many-body states with collective dissipation and long-ranged interactions. Here, we put forward and explore a scenario in which a dense atomic gas — where the sep... Read More about Dressed dense atomic gases.

Exploring nonequilibrium phases of the generalized Dicke model with a trapped Rydberg-ion quantum simulator (2019)
Journal Article
Gambetta, F. M., Lesanovsky, I., & Li, W. (2019). Exploring nonequilibrium phases of the generalized Dicke model with a trapped Rydberg-ion quantum simulator. Physical Review A, 100(2), doi:10.1103/physreva.100.022513

Trapped ions are a versatile platform for the investigation of quantum many-body phenomena, in particular for the study of scenarios where long-range interactions are mediated by phonons. Recent experiments have shown that the trapped ion platform ca... Read More about Exploring nonequilibrium phases of the generalized Dicke model with a trapped Rydberg-ion quantum simulator.

Subradiance-protected excitation transport (2019)
Journal Article
Needham, J. A., Lesanovsky, I., & Olmos, B. (2019). Subradiance-protected excitation transport. New Journal of Physics, 21(7), doi:10.1088/1367-2630/ab31e8

We explore excitation transport within a one-dimensional chain of atoms where the atomic transition dipoles are coupled to the free radiation field. When the atoms are separated by distances smaller or comparable to the wavelength of the transition,... Read More about Subradiance-protected excitation transport.

Physical swap dynamics, shortcuts to relaxation, and entropy production in dissipative Rydberg gases (2019)
Journal Article
Gutiérrez, R., Garrahan, J. P., & Lesanovsky, I. (2019). Physical swap dynamics, shortcuts to relaxation, and entropy production in dissipative Rydberg gases. Physical Review E, 100(1), doi:10.1103/physreve.100.012110

Dense Rydberg gases are out-of-equilibrium systems where strong density-density interactions give rise to effective kinetic constraints. They cause dynamic arrest associated with highly constrained many-body configurations, leading to slow relaxation... Read More about Physical swap dynamics, shortcuts to relaxation, and entropy production in dissipative Rydberg gases.

Localization in spin chains with facilitation constraints and disordered interactions (2019)
Journal Article
Ostmann, M., Marcuzzi, M., Garrahan, J. P., & Lesanovsky, I. (2019). Localization in spin chains with facilitation constraints and disordered interactions. Physical Review A, 99(6), 1-7. doi:10.1103/PhysRevA.99.060101

Quantum many-body systems with kinetic constraints exhibit intriguing relaxation dynamics. Recent experimental progress in the field of cold atomic gases offers a handle for probing collective behavior of such systems, in particular for understanding... Read More about Localization in spin chains with facilitation constraints and disordered interactions.

Coherence, entanglement, and quantumness in closed and open systems with conserved charge, with an application to many-body localization (2019)
Journal Article
Macieszczak, K., Levi, E., Macrì, T., Lesanovsky, I., & Garrahan, J. P. (2019). Coherence, entanglement, and quantumness in closed and open systems with conserved charge, with an application to many-body localization. Physical Review A, 99(5), doi:10.1103/physreva.99.052354

While the scaling of entanglement in a quantum system can be used to distinguish many-body quantum phases, it is usually hard to quantify the amount of entanglement in mixed states of open quantum systems, while measuring entanglement experimentally,... Read More about Coherence, entanglement, and quantumness in closed and open systems with conserved charge, with an application to many-body localization.

Quantum accelerated approach to the thermal state of classical all-to-all connected spin systems with applications to pattern retrieval in the Hopfield neural network (2019)
Journal Article
Fiorelli, E., Rotondo, P., Marcuzzi, M., Garrahan, J. P., & Lesanovsky, I. (2019). Quantum accelerated approach to the thermal state of classical all-to-all connected spin systems with applications to pattern retrieval in the Hopfield neural network. Physical Review A, 99(3), doi:10.1103/physreva.99.032126

We explore the question as to whether quantum effects can yield a speedup of the nonequilibrium evolution of fully connected quadratic spin models towards a classical thermal state. In our approach we exploit the fact that the thermal state of a spin... Read More about Quantum accelerated approach to the thermal state of classical all-to-all connected spin systems with applications to pattern retrieval in the Hopfield neural network.

Synthetic lattices, flat bands and localization in Rydberg quantum simulators (2019)
Journal Article
Ostmann, M., Marcuzzi, M., Minář, J., & Lesanovsky, I. (2019). Synthetic lattices, flat bands and localization in Rydberg quantum simulators. Quantum Science and Technology, 4(2), 1-8. doi:10.1088/2058-9565/aaf29d

The most recent manifestation of cold Rydberg atom quantum simulators that employs tailored optical tweezer arrays enables the study of many-body dynamics under so-called facilitation conditions. We show how the facilitation mechanism yields a Hilber... Read More about Synthetic lattices, flat bands and localization in Rydberg quantum simulators.

Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems (2019)
Journal Article
Gambetta, F., Carollo, F., Marcuzzi, M., Garrahan, J., & Lesanovsky, I. (2019). Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems. Physical Review Letters, 122(1), doi:10.1103/physrevlett.122.015701

We establish a link between metastability and a discrete time-crystalline phase in a periodically driven open quantum system. The mechanism we highlight requires neither the system to display any microscopic symmetry nor the presence of disorder, but... Read More about Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems.

Non-equilibrium absorbing state phase transitions in discrete-time quantum cellular automaton dynamics on spin lattices (2018)
Journal Article
Lesanovsky, I., Macieszczak, K., & Garrahan, J. P. (2018). Non-equilibrium absorbing state phase transitions in discrete-time quantum cellular automaton dynamics on spin lattices. Quantum Science and Technology, doi:10.1088/2058-9565/aaf831

We introduce a discrete-time quantum dynamics on a two-dimensional lattice that describes the evolution of a $1+1$-dimensional spin system. The underlying quantum map is constructed such that the reduced state at each time step is separable. We show... Read More about Non-equilibrium absorbing state phase transitions in discrete-time quantum cellular automaton dynamics on spin lattices.

Singularities in large deviations of work in quantum quenches (2018)
Journal Article
Rotondo, P., Minář, J., Garrahan, J. P., Lesanovsky, I., & Marcuzzi, M. (2018). Singularities in large deviations of work in quantum quenches. Physical Review B, 98(18), doi:10.1103/physrevb.98.184303

We investigate large deviations of the work performed in a quantum quench across two different phases separated by a quantum critical point, using as an example the Dicke model quenched from its superradiant to its normal phase. We extract the distri... Read More about Singularities in large deviations of work in quantum quenches.

Current fluctuations in boundary-driven quantum spin chains (2018)
Journal Article
Carollo, F., Garrahan, J. P., & Lesanovsky, I. (2018). Current fluctuations in boundary-driven quantum spin chains. Physical Review B, 98(9), (1-9). doi:10.1103/physrevb.98.094301. ISSN 2469-9950

Boundary-driven quantum spin chains are paradigmatic nonequilibrium systems featuring the presence of particle currents. In general, it may not be possible to distinguish an incoherent type of particle transport from a truly quantum coherent one thro... Read More about Current fluctuations in boundary-driven quantum spin chains.