Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Live quantitative monitoring of mineral deposition in stem cells using tetracycline hydrochloride (2018)
Journal Article
Macri-Pellizzeri, L., De Melo, N., Ahmed, I., Grant, D. M., Scammell, B., & Sottile, V. (2018). Live quantitative monitoring of mineral deposition in stem cells using tetracycline hydrochloride. Tissue Engineering Part C Methods, 24(3), https://doi.org/10.1089/ten.TEC.2017.0400

The final stage of in vitro osteogenic differentiation is characterized by the production of mineral deposits containing calcium cations and inorganic phosphates, which populate the extracellular matrix surrounding the cell monolayer. Conventional hi... Read More about Live quantitative monitoring of mineral deposition in stem cells using tetracycline hydrochloride.

Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation (2017)
Journal Article
Gupta, D., Grant, D. M., Hossain, K. M. Z., Ahmed, I., & Sottile, V. (2018). Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation. Journal of Biomaterials Applications, 32(7), https://doi.org/10.1177/0885328217745699

Mesenchymal stem cells play a vital role in bone formation process by differentiating into osteoblasts, in a tissue that offers not a flat but a discontinuous three-dimensional (3D) topography in vivo. In order to understand how geometry may be affec... Read More about Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation.

In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization (2016)
Journal Article
Felfel, R. M., Poocza, L., Gimeno-Fabra, M., Milde, T., Hildebrand, G., Ahmed, I., …Liefeith, K. (2016). In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomedical Materials, 11(1), Article 015011. https://doi.org/10.1088/1748-6041/11/1/015011

© 2016 IOP Publishing Ltd. The manufacture of 3D scaffolds with specific controlled porous architecture, defined microstructure and an adjustable degradation profile was achieved using two-photon polymerization (TPP) with a size of 2 × 4 × 2 mm3. Sca... Read More about In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.