Research Repository

See what's under the surface


Comparative study of praseodymium additives in active selenide chalcogenide optical fibers (2018)
Journal Article
Tang, Z., Sojka, L., Furniss, D., Nunes, J., Sakr, H., Barney, E., …Seddon, A. B. (2018). Comparative study of praseodymium additives in active selenide chalcogenide optical fibers. Optical Materials Express, 8(12), 3910-3926. doi:10.1364/OME.8.003910

The choice of rare earth additive when doping chalcogenide glasses can affect their mid-infrared fiber performance. Three praseodymium additives, Pr-foil, PrCl3 and PrI3 are investigated in Ge-As-Ga-Se fibers. All the fibers are X-ray amorphous and t... Read More

Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes (2018)
Journal Article
Shen, M., Furniss, D., Tang, Z., Barney, E. R., Sójka, L., Sujecki, S., …Seddon, A. B. (2018). Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes. Optics Express, 26(18), doi:10.1364/OE.26.023641. ISSN 1094-4087

We propose a model for resonantly pumped Pr3+-doped chalcogenide fiber amplifiers which includes excited state absorption and the full spectral amplified spontaneous emission spanning from 2 μm to 6 μm. Based on this model, the observed near- and mid... Read More

Spatiotemporal modeling of mid-infrared photoluminiscence from Terbium (III) ion doped chalcogenide-selenide multimode fibers (2018)
Conference Proceeding
Sujecki, S., Sojka, L., Tang, Z., Barney, E., Furniss, D., Benson, T., & Seddon, A. (2018). Spatiotemporal modeling of mid-infrared photoluminiscence from Terbium (III) ion doped chalcogenide-selenide multimode fibers. In REMAT 2018 5th International Conference on Rare Earth Materials

Mid-infrared (MIR) light has numerous applications in medicine, biology, agriculture, defense and security. Therefore in many laboratories intensive research is being carried out to develop MIR light technology in order to achieve a similar level of... Read More

Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers (2018)
Journal Article
Sujecki, S., Sojka, L., Pawlik, E., Anders, K., Piramidowicz, R., Tang, Z., …Seddon, A. (2018). Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers. Journal of Luminescence, 199, doi:10.1016/j.jlumin.2018.03.031. ISSN 0022-2313

In this contribution we use a numerical model to study the photoluminescence emitted by Tb3+ doped chalcogenide-selenide glass fibers pumped by laser light at approximately 3 µm. The model consists of the set of ordinary differential equations (ODEs)... Read More

Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources (2017)
Journal Article
multimode fibre based spontaneous emission sources. Optical and Quantum Electronics, 49(12), doi:10.1007/s11082-017-1255-5. ISSN 0306-8919

A model is developed of a terbium (III) ion doped selenide chalcogenide glass fibre source that provides spontaneous emission within the mid-infrared (MIR) wavelength range. Three numerical algorithms are used to calculate the solution and compare th... Read More

Modelling of multimode selenide-chalcogenide glass fibre based MIR spontaneous emission sources (2017)
Conference Proceeding
Sujecki, S., Sójka, L., Bereś-Pawlik, E., Piramidowicz, R., Sakr, H., Tang, Z., …Seddon, A. B. (2017). Modelling of multimode selenide-chalcogenide glass fibre based MIR spontaneous emission sources. doi:10.1109/ICTON.2017.8024909

Chalcogenide glass fibres have been demonstrated as a suitable medium for the realisation of spontaneous emission sources for mid-infrared photonics applications with a particular emphasis on sensor technology. Such sources give a viable alternative... Read More

Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF) (2017)
Journal Article
Sakr, H., Tang, Z., Furniss, D., Sojka, L., Sujecki, S., Benson, T. M., & Seddon, A. B. (2017). Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF). Optical Materials, 67, doi:10.1016/j.optmat.2017.03.034. ISSN 0925-3467

Selenide-chalcogenide glass, small-core, step-index fiber (SIF), core-doped with Pr3+: 9.51 × 1024 ions m−3 (500 ppmw) is fabricated for the first time with indium to help solubilize Pr3+. Core diameters of 20 or 40 μm are confirmed using scanning el... Read More

Characterising refractive index dispersion in chalcogenide glasses (2016)
Conference Proceeding
Fang, Y., Sójka, L., Jayasuriya, D., Furniss, D., Tang, Z., Markos, C., …Benson, T. M. (in press). Characterising refractive index dispersion in chalcogenide glasses. doi:10.1109/ICTON.2016.7550618

Much effort has been devoted to the study of glasses that contain the chalcogen elements (sulfur, selenium and tellurium) for photonics’ applications out to MIR wavelengths. In this paper we describe some techniques for determining the refractive ind... Read More

True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass (2016)
Conference Proceeding
Seddon, A. B., Furniss, D., Tang, Z., Sójka, L., Benson, T. M., Caspary, R., & Sujecki, S. (2016). True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass. doi:10.1109/ICTON.2016.7550709

The mid-infrared (MIR) spans the 3-25 m wavelength range. Rare-earth-ion doped selenide-chalcogenide glasses are being developed for direct-emission MIR fibre lasers. The true Pr3+ absorption cross-section in the 3.5-6 µm wavelength region of a Pr3+... Read More

Numerical modeling of lathanide-ion doped fibre lasers operating within mid-infrared wavelength region (2016)
Conference Proceeding
Sójka, L., Furniss, D., Tang, Z., Sakr, H., Barney, E. R., Benson, T. M., …Fuhrberg, P. (2016). Numerical modeling of lathanide-ion doped fibre lasers operating within mid-infrared wavelength region

We discuss the numerical modelling of lanthanide-ion doped chalcogenide glass fibre lasers for operation in the mid-infrared wavelength region. We extract the modelling parameters from emission and absorption measurements using Judd-Ofelt and McCumbe... Read More

Dy3+-doped selenide chalcogenide glasses: influence of Dy3+ dopant-aditive and containment (2016)
Journal Article
Furniss, D., Tang, Z., Barney, E., Neate, N. C., Benson, T., & Seddon, A. (2016). Dy3+-doped selenide chalcogenide glasses: influence of Dy3+ dopant-aditive and containment. Journal of the American Ceramic Society, 99(7), 2283-2291. doi:10.1111/jace.14218

This work reports on process‐induced impurities in rare‐earth ion: Dy3+‐doped selenide chalcogenide glasses, which are significant materials for active photonic devices in the mid‐infrared region. In particular, the effect of contamination from t... Read More

Predictive, miniature co-extrusion of multilayered glass fiber-optic preforms (2015)
Journal Article
Bhowmick, K., Furniss, D., Morvan, H., Seddon, A. B., & Benson, T. M. (2016). Predictive, miniature co-extrusion of multilayered glass fiber-optic preforms. Journal of the American Ceramic Society, 99(1), doi:10.1111/jace.13937. ISSN 0002-7820

A miniature co-extrusion technique, to produce a concentric multilayered glass fiber-optic preform of ~3 mm diameter, is modeled and experimentally demonstrated. A three-dimensional, incompressible, noncavitating, and nonisothermal Computational Flui... Read More

Core/clad phosphate glass fibres containing iron and/or titanium (2015)
Journal Article
Ahmed, I., Shahruddin, S., Sharmin, N., Furniss, D., & Rudd, C. D. (2015). Core/clad phosphate glass fibres containing iron and/or titanium. Biomedical Glasses, 1(1), doi:10.1515/bglass-2015-0004. ISSN 2299-3932

Phosphate glasses are novel amorphous biomaterials due to their fully resorbable characteristics, with controllable degradation profiles. In this study, phosphate glasses containing titanium and/or iron were identified to exhibit sufficiently matched... Read More