Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., …Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture (2021)
Journal Article
Gupta, D., Hossain, K. M. Z., Roe, M., Smith, E. F., Ahmed, I., Sottile, V., & Grant, D. M. (2021). Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture. ACS Applied Bio Materials, 4(8), 5987-6004. https://doi.org/10.1021/acsabm.1c00120

Phosphate-based glasses (PBGs) are biomaterials that degrade under physiological conditions and can be modified to release various ions depending on end applications. This study utilized slow-degrading (P45:45P2O5-16CaO-24MgO-11Na2O10 4Fe2O3, mol %)... Read More about Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture.

Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics (2020)
Journal Article
Lei, L., Li, M., Grant, D. M., Yang, S., Yu, Y., Watts, J. A., & Amabilino, D. B. (2020). Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics. Chemistry of Materials, 32(14), 5958–5972. https://doi.org/10.1021/acs.chemmater.0c00798

Delicate morphology and defect control are crucial for high-performance optoelectronics. For metal halide perovskites, antisolvent precipitation is the most common process to realize the control and develop the state-of-art devices. However, the solu... Read More about Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics.

Gallium incorporation into phosphate based glasses: bulk and thin film properties (2018)
Journal Article
Stuart, B. W., Grant, C. A., Stan, G. E., Popa, A. C., Titman, J. J., & Grant, D. M. (2018). Gallium incorporation into phosphate based glasses: bulk and thin film properties. Journal of the Mechanical Behavior of Biomedical Materials, 82, https://doi.org/10.1016/j.jmbbm.2018.03.041

The osteogenic ions Ca2+, P5+, Mg2+, and antimicrobial ion Ga3+ were homogenously dispersed into a 1.45 mum thick phosphate glass coating by plasma assisted sputtering onto CP grade titanium. The objective was to deliver therapeutic ions in orthopedi... Read More about Gallium incorporation into phosphate based glasses: bulk and thin film properties.