Skip to main content

Research Repository

See what's under the surface


Early developmental plasticity of lateral roots in response to asymmetric water availability (2020)
Journal Article
von Wangenheim, D., Banda, J., Schmitz, A., Boland, J., Bishopp, A., Maizel, A., …Bennett, M. (2020). Early developmental plasticity of lateral roots in response to asymmetric water availability. Nature Plants, https://doi.org/10.1038/s41477-019-0580-z

© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Root branching is influenced by the soil environment and exhibits a high level of plasticity. We report that the radial positioning of emerging lateral roots is influenced by... Read More about Early developmental plasticity of lateral roots in response to asymmetric water availability.

A core mechanism for specifying root vascular pattern can replicate the anatomical variation seen in diverse plant species (2019)
Journal Article
Mellor, N., Vaughan-Hirsch, J., Kümpers, B. M., Help-Rinta-Rahko, H., Miyashima, S., Pekka Mähönen, A., …Bishopp, A. (2019). A core mechanism for specifying root vascular pattern can replicate the anatomical variation seen in diverse plant species. Development, 146, doi:10.1242/dev.172411

Pattern formation is typically controlled through the interaction between molecular signals within a given tissue. During early embryonic development, roots of the model plant Arabidopsis thaliana have a radially symmetric pattern, but a heterogeneou... Read More about A core mechanism for specifying root vascular pattern can replicate the anatomical variation seen in diverse plant species.

Mobile PEAR transcription factors integrate positional cues to prime cambial growth (2019)
Journal Article
Miyashima, S., Roszak, P., Sevilem, I., Toyokura, K., Blob, B., Heo, J., …Helariutta, Y. (2019). Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature, 565, 490–494. doi:10.1038/s41586-018-0839-y

Apical growth in plants initiates upon seed germination, whereas radial growth is primed only during early ontogenesis in procambium cells and activated later by the vascular cambium1. Although it is not known how radial growth is organized and regul... Read More about Mobile PEAR transcription factors integrate positional cues to prime cambial growth.

Roots branch towards water by post-translational modification of transcription factor ARF7 (2018)
Journal Article
Orosa Puente, B., Leftley, N., Von Wangenheim, D., Banda, J., Anjil, S., Hill, K., …Bennett, M. (2018). Roots branch towards water by post-translational modification of transcription factor ARF7. 00 Journal not listed, 362(6421), 1407-1410. doi:10.1126/science.aau3956

Plants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7. Thi... Read More about Roots branch towards water by post-translational modification of transcription factor ARF7.

Cellular patterning of Arabidopsis roots under low phosphate conditions (2018)
Journal Article
Janes, G., von Wangenheim, D., Cowling, S., Kerr, I. D., Band, L. R., French, A. P., & Bishopp, A. (2018). Cellular patterning of Arabidopsis roots under low phosphate conditions. Frontiers in Plant Science, 9, doi:10.3389/fpls.2018.00735

Phosphorus is a crucial macronutrient for plants playing a critical role in many cellular signaling and energy cycling processes. In light of this, phosphorus acquisition efficiency is an important target trait for crop improvement, but it also provi... Read More about Cellular patterning of Arabidopsis roots under low phosphate conditions.

A comparison of growth on mercuric chloride for three Lemnaceae species reveals differences in growth dynamics that effect their suitability for use in either monitoring or remediating ecosystems contaminated with mercury (2018)
Journal Article
Yang, J., Li, G., Bishopp, A., Heenatigala, P., Hu, S., Chen, Y., …Hou, H. (2018). A comparison of growth on mercuric chloride for three Lemnaceae species reveals differences in growth dynamics that effect their suitability for use in either monitoring or remediating ecosystems contaminated with mercury. Frontiers in Chemistry, 6(112), https://doi.org/10.3389/fchem.2018.00112

Mercury (Hg) is a toxic heavy metal that can alter the ecological balance when it contaminates aquatic ecosystems. Previously, researchers have used various Lemnaceae species either to monitor and/or remove heavy metals from freshwater systems. As Hg... Read More about A comparison of growth on mercuric chloride for three Lemnaceae species reveals differences in growth dynamics that effect their suitability for use in either monitoring or remediating ecosystems contaminated with mercury.

A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (2018)
Journal Article
Giehl, R. F. H., Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F., Hartmann, A., …Swarup, R. (2018). A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 9, 1-9. doi:10.1038/s41467-018-03851-3

Phosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile. Here we report that auxin plays a critical role promoting root... Read More about A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate.

North, east, south, west: mapping vascular tissues onto the Arabidopsis root (2017)
Journal Article
Vaughan-Hirsch, J., Goodall, B., & Bishopp, A. (2018). North, east, south, west: mapping vascular tissues onto the Arabidopsis root. Current Opinion in Plant Biology, 41, https://doi.org/10.1016/j.pbi.2017.07.011

The Arabidopsis root has provided an excellent model for understanding patterning processes and cell fate specification. Vascular patterning represents an especially interesting process, as new positional information must be generated to transform an... Read More about North, east, south, west: mapping vascular tissues onto the Arabidopsis root.

Theoretical approaches to understanding root vascular patterning: a consensus between recent models (2016)
Journal Article
Mellor, N., Adibi, M., El-Showk, S., De Rybel, B., King, J., Mähönen, A. P., …Bishopp, A. (in press). Theoretical approaches to understanding root vascular patterning: a consensus between recent models. Journal of Experimental Botany, doi:10.1093/jxb/erw410

The root vascular tissues provide an excellent system for studying organ patterning, as the specification of these tissues signals a transition from radial symmetry to bisymmetric patterns. The patterning process is controlled by the combined action... Read More about Theoretical approaches to understanding root vascular patterning: a consensus between recent models.

Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis (2016)
Journal Article
Mellor, N. L., Band, L. R., Pěnčík, A., Novak, O., Rashed, A., Holman, T., …Owen, M. R. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, 113(39), 11022-11027. doi:10.1073/pnas.1604458113

Auxin is a key hormone regulating plant growth and development. We combine experiments and mathematical modeling to reveal how auxin levels are maintained via feedback regulation of genes encoding key metabolic enzymes. We describe how regulation of... Read More about Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis (2016)
Journal Article
Staswickf, P., Novák, O., Penáková, P., Swarupa, R., Vo, U., Rasheda, A., …Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. https://doi.org/10.1073/pnas.1604375113

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control t... Read More about Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis.

Lateral root emergence in Arabidopsisis dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3 (2016)
Journal Article
Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., …Bennett, M. J. (2016). Lateral root emergence in Arabidopsisis dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 143(18), doi:10.1242/dev.136283

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-induc... Read More about Lateral root emergence in Arabidopsisis dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

The hidden half of crop yields (2015)
Journal Article
Bishopp, A., & Lynch, J. P. (2015). The hidden half of crop yields. Nature Plants, 1(8), doi:10.1038/NPLANTS.2015.117

Cytokinin signalling inhibitory fields provide robustness to phyllotaxis (2013)
Journal Article
Besnard, F., Farcot, E., Refahi, Y., Morin, V., Marteaux, B., Brunoud, G., …Vernoux, T. (2014). Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature, 505(7483), 417-421. https://doi.org/10.1038/nature12791

How biological systems generate reproducible patterns with high precision is a central question in science. The shoot apical meristem (SAM), a specialized tissue producing plant aerial organs, is a developmental system of choice to address this quest... Read More about Cytokinin signalling inhibitory fields provide robustness to phyllotaxis.