Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Fluctuations in auxin levels depend upon synchronicity of cell divisions in a one-dimensional model of auxin transport (2023)
Journal Article
Bellows, S., Janes, G., Avitabile, D., King, J. R., Bishopp, A., & Farcot, E. (2023). Fluctuations in auxin levels depend upon synchronicity of cell divisions in a one-dimensional model of auxin transport. PLoS Computational Biology, 19(11), Article e1011646. https://doi.org/10.1371/journal.pcbi.1011646

Auxin is a well-studied plant hormone, the spatial distribution of which remains incompletely understood. Here, we investigate the effects of cell growth and divisions on the dynamics of auxin patterning, using a combination of mathematical modelling... Read More about Fluctuations in auxin levels depend upon synchronicity of cell divisions in a one-dimensional model of auxin transport.

Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development (2021)
Journal Article
Yang, B. J., Minne, M., Brunoni, F., Plačková, L., Petřík, I., Sun, Y., …De Rybel, B. (2021). Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development. Nature Plants, 7(11), 1485-1494. https://doi.org/10.1038/s41477-021-01017-6

During plant development, a precise balance of cytokinin is crucial for correct growth and patterning, but it remains unclear how this is achieved across different cell types and in the context of a growing organ. Here we show that in the root apical... Read More about Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development.

A network of transcriptional repressors modulates auxin responses (2020)
Journal Article
Truskina, J., Han, J., Chrysanthou, E., Galvan-Ampudia, C. S., Lainé, S., Brunoud, G., …Vernoux, T. (2020). A network of transcriptional repressors modulates auxin responses. Nature, 589, 116–119. https://doi.org/10.1038/s41586-020-2940-2

The regulation of signalling capacity, combined with the spatiotemporal distribution of developmental signals themselves, is pivotal in setting developmental responses in both plants and animals. The hormone auxin is a key signal for plant growth and... Read More about A network of transcriptional repressors modulates auxin responses.

Theoretical approaches to understanding root vascular patterning: a consensus between recent models (2016)
Journal Article
Mellor, N., Adibi, M., El-Showk, S., De Rybel, B., King, J., Mähönen, A. P., …Bishopp, A. (in press). Theoretical approaches to understanding root vascular patterning: a consensus between recent models. Journal of Experimental Botany, https://doi.org/10.1093/jxb/erw410

The root vascular tissues provide an excellent system for studying organ patterning, as the specification of these tissues signals a transition from radial symmetry to bisymmetric patterns. The patterning process is controlled by the combined action... Read More about Theoretical approaches to understanding root vascular patterning: a consensus between recent models.

Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis (2016)
Journal Article
Mellor, N. L., Band, L. R., Pěnčík, A., Novak, O., Rashed, A., Holman, T., …Owen, M. R. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, 113(39), 11022-11027. https://doi.org/10.1073/pnas.1604458113

Auxin is a key hormone regulating plant growth and development. We combine experiments and mathematical modeling to reveal how auxin levels are maintained via feedback regulation of genes encoding key metabolic enzymes. We describe how regulation of... Read More about Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.