Skip to main content

Research Repository

Advanced Search

All Outputs (11)

Proteins in Ionic Liquids: Reactions, Applications and Futures (2019)
Journal Article
Schindl, A., Hagen, M. L., Muzammal, S., Gunasekera, H. A., & Croft, A. K. (2019). Proteins in Ionic Liquids: Reactions, Applications and Futures. Frontiers in Chemistry, 7, Article 347. https://doi.org/10.3389/fchem.2019.00347

Biopolymer processing and handling is greatly facilitated by the use of ionic liquids, given the increased solubility, and in some cases, structural stability imparted to these molecules. Focussing on proteins, we highlight here not just the key dri... Read More about Proteins in Ionic Liquids: Reactions, Applications and Futures.

Ion - reagent interactions contributing to ionic liquid solvent effects on a condensation reaction (2018)
Journal Article
Keaveney, S. T., Harper, J. B., & Croft, A. K. (2018). Ion - reagent interactions contributing to ionic liquid solvent effects on a condensation reaction. ChemPhysChem, 19(23), 3279-3287. https://doi.org/10.1002/cphc.201800695

Molecular dynamics simulations of solutions of hexan-1-amine or 4-methoxybenzaldehyde in acetonitrile, an ionic liquid/ acetonitrile mixture (XIL = 0.2), and a number of different (neat) ionic liquids were performed, to further understand the solvent... Read More about Ion - reagent interactions contributing to ionic liquid solvent effects on a condensation reaction.

Anaerobic radical enzymes for biotechnology (2018)
Journal Article
Jäger, C. M., & Croft, A. K. (2018). Anaerobic radical enzymes for biotechnology. ChemBioEng Reviews, 5(3), 143-162. https://doi.org/10.1002/cben.201800003

Enzymes that proceed through radical intermediates have a rich chemistry that includes functionalisation of otherwise unreactive carbon atoms, carbon-skeleton rearrangements, aromatic reductions, and unusual eliminations. Especially under anaerobic c... Read More about Anaerobic radical enzymes for biotechnology.

Improved NOE fitting for flexible molecules based on molecular mechanics data – a case study with S-adenosylmethionine (2018)
Journal Article
Bame, J., Hoeck, C., Carrington, M. J., Butts, C. P., Jäger, C. M., & Croft, A. K. (2018). Improved NOE fitting for flexible molecules based on molecular mechanics data – a case study with S-adenosylmethionine. Physical Chemistry Chemical Physics, 11(20), https://doi.org/10.1039/C7CP07265A

The use of molecular dynamics (MD) calculations to derive relative populations of conformers is highly sensitive to both timescale and parameterisation of the MD. Where these calculations are coupled with NOE data to determine the dynamics of a molec... Read More about Improved NOE fitting for flexible molecules based on molecular mechanics data – a case study with S-adenosylmethionine.

Radical reaction control in the AdoMet radical enzyme CDG Synthase (QueE): consolidate, destabilize, accelerate (2016)
Journal Article
Jäger, C. M., & Croft, A. K. (2017). Radical reaction control in the AdoMet radical enzyme CDG Synthase (QueE): consolidate, destabilize, accelerate. Chemistry - A European Journal, 23(4), https://doi.org/10.1002/chem.201604719

Controlling radical intermediates and thus catalysing and directing complex radical reactions is a central feature of S-adensosylmethionine (SAM)-dependent radical enzymes. We report ab initio and DFT calculations highlighting the specific influence... Read More about Radical reaction control in the AdoMet radical enzyme CDG Synthase (QueE): consolidate, destabilize, accelerate.

Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability (2016)
Journal Article
Karimi, M., Ignasiak, M. T., Chan, B., Croft, A. K., Radom, L., Schiesser, C. H., …Davies, M. J. (2016). Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability. Scientific Reports, 6(1), Article 38572. https://doi.org/10.1038/srep38572

© 2016 The Author(s). Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxi... Read More about Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability.

Structural elements of an NRPS cyclization domain and its intermodule docking domain (2016)
Journal Article
Dowling, D. P., Kung, Y., Croft, A. K., Taghizadeh, K., Kelly, W. L., Walsh, C. T., & Drennan, C. L. (2016). Structural elements of an NRPS cyclization domain and its intermodule docking domain. Proceedings of the National Academy of Sciences, 113(44), 12432-12437. https://doi.org/10.1073/pnas.1608615113

Epothilones are thiazole-containing natural products with anticancer activity that are biosynthesized by polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) enzymes EpoA-F. A cyclization domain of EpoB (Cy) assembles the thiazole functio... Read More about Structural elements of an NRPS cyclization domain and its intermodule docking domain.

Developing energy efficient lignin biomass processing – towards understanding mediator behaviour in ionic liquids (2016)
Journal Article
Eshtaya, M., Ejigu, A., Stephens, G., Walsh, D. A., Chen, G. Z., & Croft, A. K. (2016). Developing energy efficient lignin biomass processing – towards understanding mediator behaviour in ionic liquids. Faraday Discussions, 190, 127-145. https://doi.org/10.1039/c5fd00226e

Environmental concerns have brought attention to the requirement for more efficient and renewable processes for chemicals production. Lignin is the second most abundant natural polymer, and might serve as a sustainable resource for manufacturing fuel... Read More about Developing energy efficient lignin biomass processing – towards understanding mediator behaviour in ionic liquids.

Computational approaches to understanding reaction outcomes of organic processes in ionic liquids (2015)
Journal Article
Keaveney, S. T., Harper, J. B., & Croft, A. K. (in press). Computational approaches to understanding reaction outcomes of organic processes in ionic liquids. RSC Advances, 5, https://doi.org/10.1039/c4ra14676j

This review considers how various computational methods have been applied to explain the changes in reaction outcome on moving from a molecular to an ionic liquid solvent. Initially, different conceptual approaches to modelling ionic liquids are disc... Read More about Computational approaches to understanding reaction outcomes of organic processes in ionic liquids.

UPLC-MS profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum, Helvetia canaliculata and Fucus spiralis (2013)
Journal Article
Tierney, M. S., Soler-Vila, A., Rai, D. K., Croft, A. K., Brunton, N. P., & Smyth, T. J. (2014). UPLC-MS profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum, Helvetia canaliculata and Fucus spiralis. Metabolomics, 10(3), https://doi.org/10.1007/s11306-013-0584-z

Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between eac... Read More about UPLC-MS profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum, Helvetia canaliculata and Fucus spiralis.