Skip to main content

Research Repository

See what's under the surface


Towards infield, live plant phenotyping using a reduced-parameter CNN (2019)
Journal Article
Atanbori, J., French, A. P., & Pridmore, T. P. (2020). Towards infield, live plant phenotyping using a reduced-parameter CNN. Machine Vision and Applications, 31, https://doi.org/10.1007/s00138-019-01051-7

There is an increase in consumption of agricultural produce as a result of the rapidly growing human population, particularly in developing nations. This has triggered high-quality plant phenotyping re- search to help with the breeding of high yieldi... Read More about Towards infield, live plant phenotyping using a reduced-parameter CNN.

CNN-Based Cassava Storage Root Counting Using Real and Synthetic Images (2019)
Journal Article
Atanbori, J., Montoya, M., Selvaraj, M., French, A. P., & Pridmore, T. P. (2019). CNN-Based Cassava Storage Root Counting Using Real and Synthetic Images. Frontiers in Plant Science, 10, https://doi.org/10.3389/fpls.2019.01516

Cassava roots are complex structures comprising several distinct types of root. The number and size of the storage roots are two potential phenotypic traits reflecting crop yield and quality. Counting and measuring the size of cassava storage roots a... Read More about CNN-Based Cassava Storage Root Counting Using Real and Synthetic Images.

A low-cost aeroponic phenotyping system for storage root development: Unravelling the below-ground secrets of cassava (Manihot esculenta) (2019)
Journal Article
Selvaraj, M. G., Montoya-P, M. E., Atanbori, J., French, A. P., & Pridmore, T. (2019). A low-cost aeroponic phenotyping system for storage root development: Unravelling the below-ground secrets of cassava (Manihot esculenta). Plant Methods, 15(1), https://doi.org/10.1186/s13007-019-0517-6

© 2019 The Author(s). Background: Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent reg... Read More about A low-cost aeroponic phenotyping system for storage root development: Unravelling the below-ground secrets of cassava (Manihot esculenta).

RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures (2019)
Journal Article
Yasrab, R., Atkinson, J. A., Wells, D. M., French, A. P., Pridmore, T. P., & Pound, M. P. (2019). RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. GigaScience, 8(11), https://doi.org/10.1093/gigascience/giz123

© The Author(s) 2019. Published by Oxford University Press. BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on... Read More about RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.

RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures (2019)
Journal Article
Yasrab, R., Atkinson, J. A., Wells, D. M., French, A. P., Pridmore, T. P., & Pound, M. P. (2019). RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures. GigaScience, 8(11), https://doi.org/10.1101/709147

We present a new image analysis approach that provides fully-automatic extraction of complex root system architectures from a range of plant species in varied imaging setups. Driven by modern deep-learning approaches, RootNav 2.0 replaces previously... Read More about RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures.

A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram (2019)
Journal Article
Bellos, D., Basham, M., Pridmore, T., & French, A. P. (2019). A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram. Journal of Synchrotron Radiation, 26(3), 839-853. doi:10.1107/s1600577519003448

We designed a convolutional neural network to quickly and accurately upscale the sinograms of x-ray tomograms captured with a low number of projections; effectively increasing the number of projections. This is particularly useful for tomograms that... Read More about A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram.

Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling (2019)
Journal Article
Gibbs, J., French, A., Murchie, E., Wells, D., Pound, M., & Pridmore, T. (2019). Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1-1. https://doi.org/10.1109/TCBB.2019.2896908

Plant phenotyping is the quantitative description of a plant’s physiological, biochemical and anatomical status which can be used in trait selection and helps to provide mechanisms to link underlying genetics with yield. Here, an active vision- based... Read More about Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling.

Deep Hourglass for Brain Tumor Segmentation (2019)
Book Chapter
Benson, E., Pound, M. P., French, A. P., Jackson, A. S., & Pridmore, T. P. (2019). Deep Hourglass for Brain Tumor Segmentation. In BrainLes 2018: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 419-428. Springer. doi:10.1007/978-3-030-11726-9_37

The segmentation of a brain tumour in an MRI scan is a challenging task, in this paper we present our results for this problem via the BraTS 2018 challenge, consisting of 210 high grade glioma (HGG) and 75 low grade glioma (LGG) volumes for training.... Read More about Deep Hourglass for Brain Tumor Segmentation.

Enhancing supervised classifications with metamorphic relations (2018)
Conference Proceeding
Xu, L., Towey, D., French, A. P., Benford, S., Zhou, Z. Q., & Chen, T. Y. (2018). Enhancing supervised classifications with metamorphic relations. In MET '18: Proceedings of the 3rd International Workshop on Metamorphic Testing, 46-53. doi:10.1145/3193977.3193978

We report on a novel use of metamorphic relations (MRs) in machine learning: instead of conducting metamorphic testing, we use MRs for the augmentation of the machine learning algorithms themselves. In particular, we report on how MRs can enable enha... Read More about Enhancing supervised classifications with metamorphic relations.

Roots branch towards water by post-translational modification of transcription factor ARF7 (2018)
Journal Article
Orosa Puente, B., Leftley, N., Von Wangenheim, D., Banda, J., Anjil, S., Hill, K., …Bennett, M. (2018). Roots branch towards water by post-translational modification of transcription factor ARF7. 00 Journal not listed, 362(6421), 1407-1410. doi:10.1126/science.aau3956

Plants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7. Thi... Read More about Roots branch towards water by post-translational modification of transcription factor ARF7.

Plant phenotyping: an active vision cell for three-dimensional plant shoot reconstruction (2018)
Journal Article
PRIDMORE, T., Gibbs, J., Pound, M., French, A., Wells, D., & Murchie, E. (2018). Plant phenotyping: an active vision cell for three-dimensional plant shoot reconstruction. Plant Physiology, 178(2), 524-534. doi:10.1104/pp.18.00664

Three-dimensional (3D) computer-generated models of plants are urgently needed to support both phenotyping and simulation-based studies such as photosynthesis modelling. However, the construction of accurate 3D plant models is challenging as plants a... Read More about Plant phenotyping: an active vision cell for three-dimensional plant shoot reconstruction.

Towards low-cost image-based plant phenotyping using reduced-parameter CNN (2018)
Conference Proceeding
Atanbori, J., Chen, F., French, A. P., & Pridmore, T. (2018). Towards low-cost image-based plant phenotyping using reduced-parameter CNN

Segmentation is the core of most plant phenotyping applications. Current state-of-the-art plant phenotyping applications rely on deep Convolutional Neural Networks (CNNs). However, these networks have many layers and parameters, increasing training a... Read More about Towards low-cost image-based plant phenotyping using reduced-parameter CNN.

Cellular patterning of Arabidopsis roots under low phosphate conditions (2018)
Journal Article
Janes, G., von Wangenheim, D., Cowling, S., Kerr, I. D., Band, L. R., French, A. P., & Bishopp, A. (2018). Cellular patterning of Arabidopsis roots under low phosphate conditions. Frontiers in Plant Science, 9, doi:10.3389/fpls.2018.00735

Phosphorus is a crucial macronutrient for plants playing a critical role in many cellular signaling and energy cycling processes. In light of this, phosphorus acquisition efficiency is an important target trait for crop improvement, but it also provi... Read More about Cellular patterning of Arabidopsis roots under low phosphate conditions.

Root gravitropism: quantification, challenges, and solutions (2018)
Journal Article
Muller, L., Bennett, M. J., French, A., Wells, D. M., & Swarup, R. (in press). Root gravitropism: quantification, challenges, and solutions. Methods in Molecular Biology, 1761, doi:10.1007/978-1-4939-7747-5_8

Better understanding of root traits such as root angle and root gravitropism will be crucial for development of crops with improved resource use efficiency. This paper describes a high-throughput, automated image analysis method to trace Arabidopsis... Read More about Root gravitropism: quantification, challenges, and solutions.

Recognizing the Presence of Hidden Visual Markers in Digital Images (2017)
Conference Proceeding
Xu, L., French, A. P., Towey, D., & Benford, S. (2017). Recognizing the Presence of Hidden Visual Markers in Digital Images. In Proceedings of the on Thematic Workshops of ACM Multimedia 2017, 210-218. https://doi.org/10.1145/3126686.3126761

As the promise of Virtual and Augmented Reality (VR and AR) becomes more realistic, an interesting aspect of our enhanced living environment includes the availability — indeed the potential ubiquity — of scannable markers. Such markers could represen... Read More about Recognizing the Presence of Hidden Visual Markers in Digital Images.

Deep learning for multi-task plant phenotyping (2017)
Conference Proceeding
Pound, M. P., Atkinson, J. A., Wells, D. M., Pridmore, T. P., & French, A. P. (2017). Deep learning for multi-task plant phenotyping

Plant phenotyping has continued to pose a challenge to computer vision for many years. There is a particular demand to accurately quantify images of crops, and the natural variability and structure of these plants presents unique difficulties. Recent... Read More about Deep learning for multi-task plant phenotyping.

Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress (2017)
Journal Article
Lowe, A., Harrison, N., & French, A. P. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods, 13, https://doi.org/10.1186/s13007-017-0233-z

This review explores how imaging techniques are being developed with a focus on deployment for crop monitoring methods. Imaging applications are discussed in relation to both field and glasshouse-based plants, and techniques are sectioned into ‘healt... Read More about Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress.

Deep machine learning provides state-of-the-art performance in image-based plant phenotyping (2017)
Journal Article
Pound, M. P., Atkinson, J. A., Townsend, A. J., Wilson, M. H., Griffiths, M., Jackson, A. S., …French, A. P. (2017). Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. GigaScience, 6(10), doi:10.1093/gigascience/gix083

In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation... Read More about Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.

Volume Segmentation and Analysis of Biological Materials Using SuRVoS (Super-region Volume Segmentation) Workbench (2017)
Journal Article
Darrow, M. C., Luengo, I., Basham, M., Spink, M. C., Irvine, S., French, A. P., …Duke, E. M. (2017). Volume Segmentation and Analysis of Biological Materials Using SuRVoS (Super-region Volume Segmentation) Workbench. Journal of Visualized Experiments, https://doi.org/10.3791/56162

Segmentation is the process of isolating specific regions or objects within an imaged volume, so that further study can be undertaken on these areas of interest. When considering the analysis of complex biological systems, the segmentation of three-d... Read More about Volume Segmentation and Analysis of Biological Materials Using SuRVoS (Super-region Volume Segmentation) Workbench.

AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping (2017)
Journal Article
Pound, M. P., Fozard, S., Torres Torres, M., Forde, B. G., & French, A. P. (2017). AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping. Plant Methods, 13(1), https://doi.org/10.1186/s13007-017-0161-y

Background: Computer-based phenotyping of plants has risen in importance in recent years. Whilst much software has been written to aid phenotyping using image analysis, to date the vast majority has been only semi-automatic. However, such interaction... Read More about AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping.