Skip to main content

Research Repository

See what's under the surface

Advanced Search

Tunnel spectroscopy of localised electronic states in hexagonal boron nitride (2018)
Journal Article
Greenaway, M., Vdovin, E., Ghazaryan, D., Misra, A., Mischenko, A., Cao, Y., …Eaves, L. (2018). Tunnel spectroscopy of localised electronic states in hexagonal boron nitride. Communications Physics, 1, doi:10.1038/s42005-018-0097-1

Hexagonal boron nitride is a large band gap layered crystal, frequently incorporated in van der Waals heterostructures as an insulating or tunnel barrier. Localised states with energies within its band gap can emit visible light, relevant to applicat... Read More about Tunnel spectroscopy of localised electronic states in hexagonal boron nitride.

Photo-quantum Hall effect and light-induced charge transfer at the interface of graphene/InSe heterostructures (2018)
Journal Article
Bhuiyan, M. A., Kudrynskyi, Z. R., Mazumder, D., Greener, J. D., Makarovsky, O., Mellor, C. J., …Patanè, A. (2019). Photo-quantum Hall effect and light-induced charge transfer at the interface of graphene/InSe heterostructures. Advanced Functional Materials, 29(3), https://doi.org/10.1002/adfm.201805491

The transfer of electronic charge across the interface of two van der Waals crystals can underpin the operation of a new class of functional devices. Amongst van der Waals semiconductors, an exciting and rapidly growing development involves the “post... Read More about Photo-quantum Hall effect and light-induced charge transfer at the interface of graphene/InSe heterostructures.

Coherent acoustic phonons in van der Waals nanolayers and heterostructures (2018)
Journal Article
Greener, J. D., Akimov, A. V., Gusev, V., Kudrynskyi, Z., Beton, P. H., Kovalyuk, Z. D., …Patanè, A. (2018). Coherent acoustic phonons in van der Waals nanolayers and heterostructures. Physical Review B, 98(7), https://doi.org/10.1103/PhysRevB.98.075408

Terahertz (THz) and sub-THz coherent acoustic phonons have been successfully used as probes of various quantum systems. Since their wavelength is in the nanometer range, they can probe nanostructures buried below a surface with nanometer resolution a... Read More about Coherent acoustic phonons in van der Waals nanolayers and heterostructures.

Mid-IR plasmonic compound with gallium oxide toplayer formed by GaSb oxidation in water (2018)
Journal Article
Bomers, M., Di Paola, D. M., Cerutti, L., Michel, T., Arinero, R., Tournié, E., …Taliercio, T. (2018). Mid-IR plasmonic compound with gallium oxide toplayer formed by GaSb oxidation in water. Semiconductor Science and Technology, 33(9), doi:10.1088/1361-6641/aad4bf

The oxidation of GaSb in aqueous environments has gained interest by the advent of plasmonic antimonide-based compound semiconductors for molecular sensing applications. This work focuses on quantifying the GaSb–water reaction kinetics by studying a... Read More about Mid-IR plasmonic compound with gallium oxide toplayer formed by GaSb oxidation in water.

Magnetotransport and lateral confinement in an InSe van der Waals heterostructure (2018)
Journal Article
Lee, Y., Pisoni, R., Overweg, H., Eich, M., Rickhaus, P., Patane, A., …Ensslin, K. (2018). Magnetotransport and lateral confinement in an InSe van der Waals heterostructure. 2D Materials, 5(3), doi:10.1088/2053-1583/aacb49

In the last six years, Indium selenide (InSe) has appeared as a new van der Waals heterostructure platform which has been extensively studied due to its unique electronic and optical properties. Such as transition metal dichalcogenides (TMDCs), the c... Read More about Magnetotransport and lateral confinement in an InSe van der Waals heterostructure.

Improved performance of InSe field-effect transistors by channel encapsulation (2018)
Journal Article
Liang, G., Wang, Y., Han, L., Yang, Z., Xin, Q., Kudrynskyi, Z. R., …Song, A. (2018). Improved performance of InSe field-effect transistors by channel encapsulation. Semiconductor Science and Technology, 33(6), doi:10.1088/1361-6641/aab62b

Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosp... Read More about Improved performance of InSe field-effect transistors by channel encapsulation.

Gate-defined quantum confinement in InSe-based van der Waals heterostructures (2018)
Journal Article
Hamer, M. J., Tovari, E., Zhu, M., Thompson, M., Mayorov, A., Prance, J., …Gorbachev, R. (2018). Gate-defined quantum confinement in InSe-based van der Waals heterostructures. Nano Letters, 18(6), 3950–3955. https://doi.org/10.1021/acs.nanolett.8b01376

Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here w... Read More about Gate-defined quantum confinement in InSe-based van der Waals heterostructures.

Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe (2018)
Journal Article
Balakrishnan, N., Steer, E. D., Smith, E. F., Kudrynskyi, Z. R., Kovalyuk, Z. D., Eaves, L., …Beton, P. H. (2018). Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Materials, 5(3), https://doi.org/10.1088/2053-1583/aac479

We demonstrate that γ-InSe and the α, β and γ phases of In2Se3 can be grown epitaxially on ε-GaSe substrates using a physical vapour transport method. By exploiting the temperature gradient within the tube furnace, we can grow selectively different p... Read More about Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe.

Room temperature uniaxial magnetic anisotropy induced by Fe-islands in the InSe semiconductor van der Waals crystal (2018)
Journal Article
Moro, F., Bhuiyan, M. A., Kudrynskyi, Z. R., Puttock, R., Kazakova, O., Makarovsky, O., …Patanè, A. (2018). Room temperature uniaxial magnetic anisotropy induced by Fe-islands in the InSe semiconductor van der Waals crystal. Advanced Science, 5(7), https://doi.org/10.1002/advs.201800257

The controlled manipulation of the spin and charge of electrons in a semiconductor has the potential to create new routes to digital electronics beyond Moore’s law, spintronics, and quantum detection and imaging for sensing applications. These techno... Read More about Room temperature uniaxial magnetic anisotropy induced by Fe-islands in the InSe semiconductor van der Waals crystal.

Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging (2018)
Journal Article
Zamberlan, F., Turyanska, L., Patanè, A., Liu, Z., Williams, H., Fay, M., …Grabowska, A. (in press). Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging. Journal of Materials Chemistry B, 6, https://doi.org/10.1039/c7tb02912h

The short shelf-life of water-soluble quantum dots (QDs) due to colloidal instability represents a major drawback to their exploitation. This work examines the colloidal stability of PbS nanoparticles capped with dihydrolipoic acid–polyethylene glyco... Read More about Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging.

Optical detection and spatial modulation of mid-infrared surface plasmon polaritons in a highly doped semiconductor (2017)
Journal Article
Di Paola, D., Velichko, A. V., Bomers, M., Balakrishnan, N., Makarovsky, O., Capizzi, M., …Patanè, A. (2018). Optical detection and spatial modulation of mid-infrared surface plasmon polaritons in a highly doped semiconductor. Advanced Optical Materials, 6(3), https://doi.org/10.1002/adom.201700492

Highly doped semiconductors (HDSCs) are promising candidates for plasmonic applications in the mid-infrared (MIR) spectral range. This work examines a recent addition to the HDSC family, the dilute nitride alloy In(AsN). Post-growth hydrogenation of... Read More about Optical detection and spatial modulation of mid-infrared surface plasmon polaritons in a highly doped semiconductor.

A giant quantum Hall plateau in graphene coupled to an InSe van der Waals crystal (2017)
Journal Article
Kudrynskyi, Z. R., Bhuiyan, M. A., Makarovsky, O., Greener, J. D., Vdovin, E. E., Kovalyuk, Z. D., …Patanè, A. (2017). A giant quantum Hall plateau in graphene coupled to an InSe van der Waals crystal. Physical Review Letters, 119(15), https://doi.org/10.1103/PhysRevLett.119.157701

We report on a “giant” quantum Hall effect plateau in a graphene-based field effect transistor where graphene is capped by a layer of the van der Waals crystal InSe. The “giant” quantum Hall effect plateau arises from the close alignment of the condu... Read More about A giant quantum Hall plateau in graphene coupled to an InSe van der Waals crystal.

High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN (2017)
Journal Article
Liu, L., Yang, C., Patanè, A., Yu, Z., Yan, F., Wang, K., …Zhao, L. (2017). High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale, 24, doi:10.1039/c7nr01290j

Photodetectors for the ultraviolet (UV) range of the electromagnetic spectrum are in great demand for several technologies, but require the development of novel device structures and materials. Here we report on the high detectivity of UV photodetect... Read More about High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN.

The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals (2016)
Journal Article
Mudd, G., Molas, M., Chen, X., Zólyomi, V., Nogajewski, K., Kudrynskyi, Z. R., …Patanè, A. (2016). The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific Reports, 6(1), https://doi.org/10.1038/srep39619

The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate th... Read More about The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.

High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe (2016)
Journal Article
Bandurin, D. A., Tyurnina, A. V., Yu, G. L., Mishchenko, A., Zólyomi, V., Morozov, S. V., …Cao, Y. (in press). High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotechnology, doi:10.1038/nnano.2016.242

A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement a... Read More about High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe.

Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN (2016)
Journal Article
Eßer, F., Winner, S., Patanè, A., Helm, M., & Schneider, H. (in press). Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN. Applied Physics Letters, 109(18), doi:10.1063/1.4966949

We use time-resolved photoluminescence (PL) spectroscopy to study the recombination dynamics in Si-doped GaAsN semiconductor alloys with a nitrogen content up to 0.2%. The PL decay is predominantly monoexponential and exhibits a strong energy dispers... Read More about Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN.

Developing Mn-doped lead sulfide quantum dots for MRI labels (2016)
Journal Article
Turyanska, L., Moro, F., Patanè, A., Barr, J., Köckenberger, W., Taylor, A., …Thomas, N. R. (2016). Developing Mn-doped lead sulfide quantum dots for MRI labels. Journal of Materials Chemistry B, 4(42), 6797-6802. https://doi.org/10.1039/c6tb02574a

Magnetic interactions of Mn2+ions in lead sulfide (PbS) nanocrystals with protons in water are probed by NMR and MRI. A thin layer of capping molecules enables free solvent diffusion to the nanocrystal surface resulting in a decrease of proton relaxa... Read More about Developing Mn-doped lead sulfide quantum dots for MRI labels.

Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire (2016)
Journal Article
Beardsley, R., Akimov, A. V., Greener, J. D., Mudd, G. W., Sandeep, S., Kudrynskyi, Z. R., …Kent, A. J. (2016). Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire. Scientific Reports, 6, https://doi.org/10.1038/srep26970

Van der Waals (vdW) layered crystals and heterostructures have attracted substantial interest for potential applications in a wide range of emerging technologies. An important, but often overlooked, consideration in the development of implementable d... Read More about Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire.

Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport (2016)
Journal Article
Balakrishnan, N., Staddon, C. R., Smith, E. F., Stec, J., Gay, D., Mudd, G. W., …Beton, P. H. (in press). Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport. 2D Materials, 3(2), 1-8. https://doi.org/10.1088/2053-1583/3/2/025030

We demonstrate that β-In2Se3 layers with thickness ranging from 2.8 – 100 nm can be grown on SiO2/Si, mica and graphite using a physical vapour transport method. The β-In2Se3 layers are chemically stable at room temperature and exhibit a blue-shift o... Read More about Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport.

Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors (2016)
Journal Article
Vdovin, E. E., Mishchenko, A., Greenaway, M., Zhu, M., Ghazaryan, D., Misra, A., …Eaves, L. (2016). Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors. Physical Review Letters, 116(18), https://doi.org/10.1103/PhysRevLett.116.186603

We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted... Read More about Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors.


;