Skip to main content

Research Repository

See what's under the surface

Advanced Search

Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors (2019)
Journal Article
Cottam, N. D., Zhang, C., Turyanska, L., Eaves, L., Kudrynskyi, Z., Vdovin, E. E., …Makarovsky, O. (2020). Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors. ACS Applied Electronic Materials, 2, 147-154. https://doi.org/10.1021/acsaelm.9b00664

Recent progress in the synthesis of high stability inorganic perovskite nanocrystals (NCs) has led to their increasing use in broadband photodetectors. These NCs are of particular interest for the UV range as they have the potential to extend the wav... Read More about Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors.

High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics (2019)
Journal Article
Greener, J. D., de Lima Savi, E., Akimov, A. V., Raetz, S., Kudrynskyi, Z., Kovalyuk, Z. D., …Gusev, V. E. (2019). High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics. ACS Nano, 13(10), 11530-11537. https://doi.org/10.1021/acsnano.9b05052

Although the topography of van de Waals (vdW) layers and heterostructures can be imaged by scanning probe microscopy, high-frequency interface elastic properties are more difficult to assess. These can influence the stability, reliability and perform... Read More about High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics.

Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials (2019)
Journal Article
Sreepal, V., Yagmurcukardes, M., Vasu, K. S., Kelly, D. J., Taylor, S. F. R., Kravets, V. G., …Nair, R. R. (2019). Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials. Nano Letters, doi:10.1021/acs.nanolett.9b02700

Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have be... Read More about Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials.

Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN (2019)
Journal Article
Zhang, C., Turyanska, L., Cao, H., Zhao, L., Fay, M. W., Temperton, R., …Patanè, A. (2019). Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN. Nanoscale, 11(28), 13450-13457. doi:10.1039/C9NR03707A

Despite important advances in the synthesis of inorganic perovskite nanocrystals (NCs), the long-term instability and degradation of their quantum yield (QY) over time need to be addressed to enable the further development and exploitation of these n... Read More about Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN.

Realization of Universal Quantum Gates with Spin-Qudits in Colloidal Quantum Dots (2019)
Journal Article
Moro, F., Fielding, A. J., Turyanska, L., & Patanè, A. (2019). Realization of Universal Quantum Gates with Spin-Qudits in Colloidal Quantum Dots. Advanced Quantum Technologies, 1-6. doi:10.1002/qute.201900017

Hyperfine interactions in a single Mn‐ion confined in a quantum dot (QD) are exploited to create a qudit, that is, a multilevel quantum‐bit system, with well‐defined, addressable, and robust set of spin states for the realization of universal quantum... Read More about Realization of Universal Quantum Gates with Spin-Qudits in Colloidal Quantum Dots.

Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts (2019)
Journal Article
Wei, X., Yan, F., Lv, Q., Zhu, W., Hu, C., Patane, A., & Wang, K. (2019). Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts. Advanced Optical Materials, 7(12), doi:10.1002/adom.201900190

Atomically thin two dimensional (2D) materials are promising candidates for miniaturized high-performance optoelectronic devices. Here, we report on multilayer MoTe2 photodetectors contacted with asymmetric electrodes based on n- and p-type graphene... Read More about Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts.


;