Skip to main content

Research Repository

Advanced Search

All Outputs (65)

Improved performance of InSe field-effect transistors by channel encapsulation (2018)
Journal Article
Liang, G., Wang, Y., Han, L., Yang, Z., Xin, Q., Kudrynskyi, Z. R., …Song, A. (2018). Improved performance of InSe field-effect transistors by channel encapsulation. Semiconductor Science and Technology, 33(6), Article 06LT01. https://doi.org/10.1088/1361-6641/aab62b

Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosp... Read More about Improved performance of InSe field-effect transistors by channel encapsulation.

Gate-Defined Quantum Confinement in InSe-Based van der Waals Heterostructures (2018)
Journal Article
Hamer, M. J., Tovari, E., Zhu, M., Thompson, M., Mayorov, A., Prance, J., …Gorbachev, R. (2018). Gate-Defined Quantum Confinement in InSe-Based van der Waals Heterostructures. Nano Letters, 18(6), 3950-3955. https://doi.org/10.1021/acs.nanolett.8b01376

© Copyright 2018 American Chemical Society. Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attr... Read More about Gate-Defined Quantum Confinement in InSe-Based van der Waals Heterostructures.

Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe (2018)
Journal Article
Balakrishnan, N., Steer, E. D., Smith, E. F., Kudrynskyi, Z. R., Kovalyuk, Z. D., Eaves, L., …Beton, P. H. (2018). Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Materials, 5(3), https://doi.org/10.1088/2053-1583/aac479

We demonstrate that γ-InSe and the α, β and γ phases of In2Se3 can be grown epitaxially on ε-GaSe substrates using a physical vapour transport method. By exploiting the temperature gradient within the tube furnace, we can grow selectively different p... Read More about Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe.

Room temperature uniaxial magnetic anisotropy induced by Fe-islands in the InSe semiconductor van der Waals crystal (2018)
Journal Article
Moro, F., Bhuiyan, M. A., Kudrynskyi, Z. R., Puttock, R., Kazakova, O., Makarovsky, O., …Patanè, A. (2018). Room temperature uniaxial magnetic anisotropy induced by Fe-islands in the InSe semiconductor van der Waals crystal. Advanced Science, 5(7), Article 1800257. https://doi.org/10.1002/advs.201800257

The controlled manipulation of the spin and charge of electrons in a semiconductor has the potential to create new routes to digital electronics beyond Moore’s law, spintronics, and quantum detection and imaging for sensing applications. These techno... Read More about Room temperature uniaxial magnetic anisotropy induced by Fe-islands in the InSe semiconductor van der Waals crystal.

Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging (2018)
Journal Article
Zamberlan, F., Turyanska, L., Patanè, A., Liu, Z., Williams, H., Fay, M., …Grabowska, A. (in press). Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging. Journal of Materials Chemistry B, 6, https://doi.org/10.1039/c7tb02912h

The short shelf-life of water-soluble quantum dots (QDs) due to colloidal instability represents a major drawback to their exploitation. This work examines the colloidal stability of PbS nanoparticles capped with dihydrolipoic acid–polyethylene glyco... Read More about Stable DHLA–PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging.

Optical detection and spatial modulation of mid-infrared surface plasmon polaritons in a highly doped semiconductor (2017)
Journal Article
Di Paola, D., Velichko, A. V., Bomers, M., Balakrishnan, N., Makarovsky, O., Capizzi, M., …Patanè, A. (2018). Optical detection and spatial modulation of mid-infrared surface plasmon polaritons in a highly doped semiconductor. Advanced Optical Materials, 6(3), Article 1700492. https://doi.org/10.1002/adom.201700492

Highly doped semiconductors (HDSCs) are promising candidates for plasmonic applications in the mid-infrared (MIR) spectral range. This work examines a recent addition to the HDSC family, the dilute nitride alloy In(AsN). Post-growth hydrogenation of... Read More about Optical detection and spatial modulation of mid-infrared surface plasmon polaritons in a highly doped semiconductor.

Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal (2017)
Journal Article
Kudrynskyi, Z. R., Bhuiyan, M. A., Makarovsky, O., Greener, J. D., Vdovin, E. E., Kovalyuk, Z. D., …Patanè, A. (2017). Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal. Physical Review Letters, 119(15), Article 157701. https://doi.org/10.1103/PhysRevLett.119.157701

© 2017 authors. Published by the American Physical Society. We report on a "giant" quantum Hall effect plateau in a graphene-based field-effect transistor where graphene is capped by a layer of the van der Waals crystal InSe. The giant quantum Hall e... Read More about Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal.

Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures (2017)
Journal Article
Yan, F., Zhao, L., Patanè, A., Hu, P., Wei, X., Luo, W., …Wang, K. (2017). Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology, 28(27), Article 27LT01. https://doi.org/10.1088/1361-6528/aa749e

The integration of different two-dimensional materials within a multilayer van der Waals (vdW) heterostructure offers a promising technology for high performance opto-electronic devices such as photodetectors and light sources. Here we report on the... Read More about Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures.

Microwave Generation in Synchronized Semiconductor Superlattices (2017)
Journal Article
Gaifullin, M., Alexeeva, N., Hramov, A., Makarov, V., Maksimenko, V., Koronovskii, A., …Balanov, A. (2017). Microwave Generation in Synchronized Semiconductor Superlattices. Physical Review Applied, 7(4), Article 044024. https://doi.org/10.1103/PhysRevApplied.7.044024

We study high-frequency generation in a system of electromagnetically coupled semiconductor superlattices fabricated on the same doped substrate. Applying a bias voltage to a single superlattice generates high-frequency current oscillations. We demon... Read More about Microwave Generation in Synchronized Semiconductor Superlattices.

High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN (2017)
Journal Article
Liu, L., Yang, C., Patanè, A., Yu, Z., Yan, F., Wang, K., …Zhao, L. (2017). High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale, 24, https://doi.org/10.1039/c7nr01290j

Photodetectors for the ultraviolet (UV) range of the electromagnetic spectrum are in great demand for several technologies, but require the development of novel device structures and materials. Here we report on the high detectivity of UV photodetect... Read More about High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN.

The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals (2016)
Journal Article
Mudd, G., Molas, M., Chen, X., Zólyomi, V., Nogajewski, K., Kudrynskyi, Z. R., …Patanè, A. (2016). The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific Reports, 6(1), Article 39619. https://doi.org/10.1038/srep39619

The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate th... Read More about The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.

High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe (2016)
Journal Article
Bandurin, D. A., Tyurnina, A. V., Yu, G. L., Mishchenko, A., Zólyomi, V., Morozov, S. V., …Cao, Y. (2017). High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotechnology, 12(3), 223-227. https://doi.org/10.1038/nnano.2016.242

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These dif... Read More about High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe.

Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN (2016)
Journal Article
Eßer, F., Winner, S., Patanè, A., Helm, M., & Schneider, H. (in press). Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN. Applied Physics Letters, 109(18), Article 182113. https://doi.org/10.1063/1.4966949

We use time-resolved photoluminescence (PL) spectroscopy to study the recombination dynamics in Si-doped GaAsN semiconductor alloys with a nitrogen content up to 0.2%. The PL decay is predominantly monoexponential and exhibits a strong energy dispers... Read More about Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN.

Developing Mn-doped lead sulfide quantum dots for MRI labels (2016)
Journal Article
Turyanska, L., Moro, F., Patanè, A., Barr, J., Köckenberger, W., Taylor, A., …Thomas, N. R. (2016). Developing Mn-doped lead sulfide quantum dots for MRI labels. Journal of Materials Chemistry B, 4(42), 6797-6802. https://doi.org/10.1039/c6tb02574a

Magnetic interactions of Mn2+ions in lead sulfide (PbS) nanocrystals with protons in water are probed by NMR and MRI. A thin layer of capping molecules enables free solvent diffusion to the nanocrystal surface resulting in a decrease of proton relaxa... Read More about Developing Mn-doped lead sulfide quantum dots for MRI labels.

Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire (2016)
Journal Article
Beardsley, R., Akimov, A. V., Greener, J. D., Mudd, G. W., Sandeep, S., Kudrynskyi, Z. R., …Kent, A. J. (2016). Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire. Scientific Reports, 6, https://doi.org/10.1038/srep26970

Van der Waals (vdW) layered crystals and heterostructures have attracted substantial interest for potential applications in a wide range of emerging technologies. An important, but often overlooked, consideration in the development of implementable d... Read More about Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire.

Quantum confinement and photoresponsivity of ?-In2Se3 nanosheets grown by physical vapour transport (2016)
Journal Article
Balakrishnan, N., Staddon, C. R., Smith, E. F., Stec, J., Gay, D., Mudd, G. W., …Beton, P. H. (in press). Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport. 2D Materials, 3(2), 1-8. https://doi.org/10.1088/2053-1583/3/2/025030

We demonstrate that β-In2Se3 layers with thickness ranging from 2.8 – 100 nm can be grown on SiO2/Si, mica and graphite using a physical vapour transport method. The β-In2Se3 layers are chemically stable at room temperature and exhibit a blue-shift o... Read More about Quantum confinement and photoresponsivity of ?-In2Se3 nanosheets grown by physical vapour transport.

Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors (2016)
Journal Article
Vdovin, E. E., Mishchenko, A., Greenaway, M., Zhu, M., Ghazaryan, D., Misra, A., …Eaves, L. (2016). Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors. Physical Review Letters, 116(18), Article 186603. https://doi.org/10.1103/PhysRevLett.116.186603

We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted... Read More about Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors.

Resonant tunnelling between the chiral Landau states of twisted graphene lattices (2015)
Journal Article
Greenaway, M., Vdovin, E. E., Mishchenko, A., Makarovsky, O., Patanè, A., Wallbank, J., …Eaves, L. (2015). Resonant tunnelling between the chiral Landau states of twisted graphene lattices. Nature Physics, 11(12), 1057-1062. https://doi.org/10.1038/nphys3507

A class of multilayered functional materials has recently emerged in which the component atomic layers are held together by weak van der Waals forces that preserve the structural integrity and physical properties of each layer. An exemplar of such a... Read More about Resonant tunnelling between the chiral Landau states of twisted graphene lattices.

Electron spin coherence near room temperature in magnetic quantum dots (2015)
Journal Article
Moro, F., Turyanska, L., Wilman, J., Fielding, A. J., Fay, M. W., Granwehr, J., & Patanè, A. (2015). Electron spin coherence near room temperature in magnetic quantum dots. Scientific Reports, 5, Article 10855. https://doi.org/10.1038/srep10855

We report on an example of confined magnetic ions with long spin coherence near room temperature. This was achieved by confining single Mn 2+ spins in colloidal semiconductor quantum dots (QDs) and by dispersing the QDs in a proton-spin free matrix.... Read More about Electron spin coherence near room temperature in magnetic quantum dots.

High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures (2015)
Journal Article
Mudd, G. W., Svatek, S. A., Hague, L., Makarovsky, O., Kudrynskyi, Z. R., Mellor, C. J., …Patanè, A. (2015). High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures. Advanced Materials, 27(25), 3760-3766. https://doi.org/10.1002/adma.201500889

We exploit the broad-band transparency of graphene and the favorable band line up of graphene with van der Waals InSe crystals to create new functional heterostructures and high-performance photodetectors. The InSe-graphene heterostructure exhibits a... Read More about High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures.