Skip to main content

Research Repository

Advanced Search

All Outputs (45)

Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., …Turyanska, L. (2024). Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T. Small, Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T.

Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect (2023)
Journal Article
Hu, Y., Weir, M. P., Pereira, H. J., Amin, O. J., Pitcairn, J., Cliffe, M. J., …Woodward, S. (2023). Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect. Applied Physics Letters, 123(22), Article 223902. https://doi.org/10.1063/5.0157778

In this work, we present a method to enhance the longitudinal spin Seebeck effect at platinum/yttrium iron garnet (Pt/YIG) interfaces. The introduction of a partial interlayer of bismuth selenide (Bi2Se3, 2.5% surface coverage) interfaces significant... Read More about Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect.

Conducting poly(3,4-ethylenedioxythiophene) materials with sustainable carrageenan counter-ions and their thermoelectric properties (2023)
Journal Article
Duan, Z., Phillips, J., Liirò-Peluso, L., Woodward, S., Makarovsky, O., Weir, M. P., …Amabilino, D. B. (2023). Conducting poly(3,4-ethylenedioxythiophene) materials with sustainable carrageenan counter-ions and their thermoelectric properties. Materials Advances, 22(4), Article 5573. https://doi.org/10.1039/d3ma00547j

The preparation and properties of conducting polymers comprising poly(3,4-ethylenedioxythiophene) (PEDOT) and two types of carrageenan – each on their own or combined – as counter-ions are described. The aim of the work is to provide alternative, mor... Read More about Conducting poly(3,4-ethylenedioxythiophene) materials with sustainable carrageenan counter-ions and their thermoelectric properties.

Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing (2023)
Journal Article
Shiffa, M., Dewes, B. T., Bradford, J., Cottam, N. D., Cheng, T. S., Mellor, C. J., …Patanè, A. (2024). Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing. Small, 20(7), Article 2305865. https://doi.org/10.1002/smll.202305865

2D semiconductors (2SEM) can transform many sectors, from information and communication technology to healthcare. To date, top‐down approaches to their fabrication, such as exfoliation of bulk crystals by “scotch‐tape,” are widely used, but have limi... Read More about Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing.

A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material (2023)
Journal Article
Hu, Y., Rivers, G., Weir, M. P., Amabilino, D. B., Tuck, C. J., Wildman, R. D., …Woodward, S. (2023). A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material. Electronic Materials Letters, https://doi.org/10.1007/s13391-023-00454-z

We describe the synthesis and characterisation of the first of a new class of soluble ladder oligomeric thermoelectric material based on previously unutilised ethene-1,1,2,2-tetrasulfonic acid. Reaction of Ba(OH)2 and propionic acid at a 1:1 stoichio... Read More about A Soluble ‘Ba(Ni-ett)’ (ett = 1,1,2,2-Ethenetetrathiolate) Derived Thermoelectric Material.

Thermally stable quantum Hall effect in a gated ferroelectric-graphene heterostructure (2023)
Journal Article
Dey, A., Cottam, N., Makarovskiy, O., Yan, W., Mišeikis, V., Coletti, C., …Patanè, A. (2023). Thermally stable quantum Hall effect in a gated ferroelectric-graphene heterostructure. Communications Physics, 6, Article 216. https://doi.org/10.1038/s42005-023-01340-8

The quantum Hall effect is widely used for the investigation of fundamental phenomena, ranging from topological phases to composite fermions. In particular, the discovery of a room temperature resistance quantum in graphene is significant for compact... Read More about Thermally stable quantum Hall effect in a gated ferroelectric-graphene heterostructure.

A magnetically-induced Coulomb gap in graphene due to electron-electron interactions (2023)
Journal Article
Vdovin, E. E., Greenaway, M. T., Khanin, Y. N., Morozov, S. V., Makarovsky, O., Patanè, A., …Eaves, L. (2023). A magnetically-induced Coulomb gap in graphene due to electron-electron interactions. Communications Physics, 6, Article 159. https://doi.org/10.1038/s42005-023-01277-y

Insights into the fundamental properties of graphene’s Dirac-Weyl fermions have emerged from studies of electron tunnelling transistors in which an atomically thin layer of hexagonal boron nitride (hBN) is sandwiched between two layers of high purity... Read More about A magnetically-induced Coulomb gap in graphene due to electron-electron interactions.

Graphene FETs with high and low mobilities have universal temperature-dependent properties (2023)
Journal Article
Gosling, J., Morozov, S. V., Vdovin, E. E., Greenaway, M. T., Khanin, Y. N., Kudrynskyi, Z., …Makarovsky, O. (2023). Graphene FETs with high and low mobilities have universal temperature-dependent properties. Nanotechnology, 34(12), Article 125702. https://doi.org/10.1088/1361-6528/aca981

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,ρ, on gate voltage,Vg, for a series of monolayer graphene field effect transistors with mobili... Read More about Graphene FETs with high and low mobilities have universal temperature-dependent properties.

Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals (2022)
Journal Article
Austin, J. S., Cottam, N. D., Zhang, C., Wang, F., Gosling, J. H., Nelson-Dummet, O., …Turyanska, L. (2023). Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals. Nanoscale, 15(5), 2134–2142. https://doi.org/10.1039/d2nr06429d

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs... Read More about Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals.

Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors (2022)
Journal Article
Cottam, N. D., Austin, J. S., Zhang, C., Patanè, A., Escoffier, W., Goiran, M., …Makarovsky, O. (2023). Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors. Advanced Electronic Materials, 9(2), Article 2200995. https://doi.org/10.1002/aelm.202200995

Stable all-inorganic CsPbX3 perovskite nanocrystals (PNCs) with high optical yield can be used in combination with graphene as photon sensors with high responsivity (up to 106 A W−1) in the VIS-UV range. The performance of these perovskite/graphene f... Read More about Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors.

Van der Waals interfaces in multilayer junctions for ultraviolet photodetection (2022)
Journal Article
Xie, S., Shiffa, M., Shiffa, M., Kudrynskyi, Z. R., Makarovskiy, O., Kovalyuk, Z. D., …Patanè, A. (2022). Van der Waals interfaces in multilayer junctions for ultraviolet photodetection. npj 2D Materials and Applications, 6(1), Article 61. https://doi.org/10.1038/s41699-022-00338-0

Developments in semiconductor science have led to the miniaturization and improvement of light detection technologies for many applications. However, traditional pn-junctions or three-dimensional device geometries for detection of ultraviolet (UV) li... Read More about Van der Waals interfaces in multilayer junctions for ultraviolet photodetection.

Memristive effects due to charge transfer in graphene gated through ferroelectric CuInP2S6 (2022)
Journal Article
Dey, A., Yan, W., Balakrishnan, N., Xie, S., Kudrynskyi, Z. R., Makarovskiy, O., …Patanè, A. (2022). Memristive effects due to charge transfer in graphene gated through ferroelectric CuInP2S6. 2D Materials, 9(3), Article 035003. https://doi.org/10.1088/2053-1583/ac6191

Ferroelectricity at the nanometre scale can drive the miniaturisation and wide application of ferroelectric devices for memory and sensing applications. The two-dimensional van der Waals (2D-vdWs) ferroelectrics CuInP2S6 (CIPS) has attracted much att... Read More about Memristive effects due to charge transfer in graphene gated through ferroelectric CuInP2S6.

Ferroelectric semiconductor junctions based on graphene/In2Se3/graphene van der Waals heterostructures (2021)
Journal Article
Xie, S., Dey, A., Yan, W., Kudrynskyi, Z. R., Balakrishnan, N., Makarovskiy, O., …Patanè, A. (2021). Ferroelectric semiconductor junctions based on graphene/In2Se3/graphene van der Waals heterostructures. 2D Materials, 8(4), Article 045020. https://doi.org/10.1088/2053-1583/ac1ada

The miniaturization of ferroelectric devices offers prospects for non-volatile memories, low-power electrical switches and emerging technologies beyond existing Si-based integrated circuits. An emerging class of ferroelectrics is based on van der Waa... Read More about Ferroelectric semiconductor junctions based on graphene/In2Se3/graphene van der Waals heterostructures.

Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals (2021)
Journal Article
Cottam, N. D., Zhang, C., Wildman, J. L., Patanè, A., Turyanska, L., & Makarovsky, O. (2021). Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals. Advanced Optical Materials, 9(13), https://doi.org/10.1002/adom.202100104

Inorganic perovskite nanocrystals (NCs) have demonstrated a number of unique optical and electronic properties for optoelectronic applications. However, the physical properties of these nanostructures, such as the dynamics of charge carriers on diffe... Read More about Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals.

Universal mobility characteristics of graphene originating from charge scattering by ionised impurities (2021)
Journal Article
Gosling, J. H., Makarovsky, O., Wang, F., Cottam, N. D., Greenaway, M. T., Patanè, A., …Fromhold, T. M. (2021). Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 4(1), Article 30. https://doi.org/10.1038/s42005-021-00518-2

Pristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrie... Read More about Universal mobility characteristics of graphene originating from charge scattering by ionised impurities.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

Enhanced Optical Emission from 2D InSe Bent onto Si?Pillars (2020)
Journal Article
Mazumder, D., Xie, J., Kudrynskyi, Z. R., Wang, X., Makarovsky, O., Bhuiyan, M. A., …Patanè, A. (2020). Enhanced Optical Emission from 2D InSe Bent onto Si‐Pillars. Advanced Optical Materials, 8(18), Article 2000828. https://doi.org/10.1002/adom.202000828

Controlling the propagation and intensity of an optical signal is central to several technologies ranging from quantum communication to signal processing. These require a versatile class of functional materials with tailored electronic and optical pr... Read More about Enhanced Optical Emission from 2D InSe Bent onto Si?Pillars.

The Interaction of Hydrogen with the van der Waals Crystal ?-InSe (2020)
Journal Article
Felton, J., Blundo, E., Ling, S., Glover, J., Kudrynskyi, Z. R., Makarovsky, O., …Patané, A. (2020). The Interaction of Hydrogen with the van der Waals Crystal γ-InSe. Molecules, 25(11), Article 2526. https://doi.org/10.3390/molecules25112526

The emergence of the hydrogen economy requires development in the storage, generation and sensing of hydrogen. The indium selenide (?-InSe) van der Waals (vdW) crystal shows promise for technologies in all three of these areas. For these applications... Read More about The Interaction of Hydrogen with the van der Waals Crystal ?-InSe.

Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode (2020)
Journal Article
Di Paola, D. M., Lu, Q., Repiso, E., Kesaria, M., Makarovsky, O., Krier, A., & Patanè, A. (2020). Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode. Applied Physics Letters, 116(14), Article 142108. https://doi.org/10.1063/5.0002407

Light emitting diodes (LEDs) in the mid-infrared (MIR) spectral range require material systems with tailored optical absorption and emission at wavelengths ? > 2??m. Here, we report on MIR LEDs based on In(AsN)/(InAl)As resonant tunneling diodes (RTD... Read More about Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode.

Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunnelling diode (2020)
Journal Article
Di Paola, D. M., Lu, Q., Repiso, E., Kesaria, M., Makarovsky, O., Krier, A., & Patanè, A. (2020). Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunnelling diode. Applied Physics Letters, 116(14), Article 142108. https://doi.org/10.1063/5.0002407

Light emitting diodes (LEDs) in the mid-infrared (MIR) spectral range require material systems with tailored optical absorption and emission at wavelengths ? > 2??m. Here, we report on MIR LEDs based on In(AsN)/(InAl)As resonant tunneling diodes (RTD... Read More about Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunnelling diode.