Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells (2019)
Journal Article
Liu, Z., Turyanska, L., Zamberlan, F., Pacifico, S., Bradshaw, T. D., Moro, F., …Thomas, N. R. (2019). Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells. Nanotechnology, 30(50), Article 505102. https://doi.org/10.1088/1361-6528/ab437c

We report on the synthesis of water-soluble gold nanoclusters capped with polyethylene glycol (PEG)-based ligands and further functionalized with folic acid for specific cellular uptake. The dihydrolipoic acid-PEG-based ligands terminated with -OMe,... Read More about Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells.

Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN (2019)
Journal Article
Zhang, C., Turyanska, L., Cao, H., Zhao, L., Fay, M. W., Temperton, R., …Patanè, A. (2019). Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN. Nanoscale, 11(28), 13450-13457. https://doi.org/10.1039/C9NR03707A

Despite important advances in the synthesis of inorganic perovskite nanocrystals (NCs), the long-term instability and degradation of their quantum yield (QY) over time need to be addressed to enable the further development and exploitation of these n... Read More about Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN.

Soot in the Lubricating Oil: An Overlooked Concern for the Gasoline Direct Injection Engine? (2019)
Journal Article
Pfau, S. A., La Rocca, A., Haffner-Staton, E., Rance, G. A., Fay, M. W., & McGhee, M. (2019). Soot in the Lubricating Oil: An Overlooked Concern for the Gasoline Direct Injection Engine?. SAE Technical Papers, 2019-April, Article 2019-01-0301. https://doi.org/10.4271/2019-01-0301

Formation of soot is a known phenomenon for diesel engines, however, only recently emerged for gasoline engines with the introduction of direct injection systems. Soot-in-oil samples from a three-cylinder turbo-charged gasoline direct injection (GDI)... Read More about Soot in the Lubricating Oil: An Overlooked Concern for the Gasoline Direct Injection Engine?.

Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors (2019)
Journal Article
Miners, S. A., Fay, M. W., Baldoni, M., Besley, E., Khlobystov, A. N., & Rance, G. A. (2019). Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors. Journal of Physical Chemistry C, 123(10), 6294-6302. https://doi.org/10.1021/acs.jpcc.9b01190

The use of single-walled carbon nanotubes as effective nanoreactors for preparative bimolecular reactions has been demonstrated for the first time. We show that the extreme spatial confinement of guest reactant molecules inside host carbon nanotubes... Read More about Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors.

Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer (2019)
Journal Article
Stoppiello, C. T., Isla, H., Martínez-Abadía, M., Fay, M. W., Parmenter, C. D. J., Roe, M. J., …Khlobystov, A. N. (2019). Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer. Nanoscale, 11(6), 2848-2854. https://doi.org/10.1039/c8nr10086a

The integrated analytical approach developed in this study offers a powerful methodology for the structural characterization of complex molecular nanomaterials. Structures of a covalent organic framework based on boronate esters (COF-5) and a conjuga... Read More about Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer.