Skip to main content

Research Repository

Advanced Search

On a low-frequency and refinement stable PMCHWT integral equation leveraging the quasi-Helmholtz projectors

Beghein, Yves; Mitharwal, Rajendra; Cools, Kristof; Andriulli, Francesco P.

On a low-frequency and refinement stable PMCHWT integral equation leveraging the quasi-Helmholtz projectors Thumbnail


Authors

Yves Beghein

Rajendra Mitharwal

Kristof Cools

Francesco P. Andriulli



Abstract

Classical Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) formulations for modeling radiation and scattering from penetrable objects suffer from ill-conditioning when the frequency is low or when the mesh density is high. The most effective techniques to solve these problems, unfortunately, either require the explicit detection of the so-called global loops of the structure, or suffer from numerical cancellation at extremely low frequency. In this contribution, a novel regularization method for the PMCHWT equation is proposed, which is based on the quasi-Helmholtz projectors. This method not only solves both the low frequency and the dense mesh ill-conditioning problems of the PMCHWT, but it is immune from low-frequency numerical cancellations and it does not require the detection of global loops. This is obtained by projecting the range space of the PMCHWT operator onto a dual basis, by rescaling the resulting quasi- Helmholtz components, by replicating the strategy in the dual space, and finally by combining the primal and the dual equations in a Calderón like fashion. Implementation-related treatments and details alternate the theoretical developments in order to maximize impact and practical applicability of the approach. Finally, numerical results corroborate the theory and show the effectiveness of the new schemes in real case scenarios.

Citation

Beghein, Y., Mitharwal, R., Cools, K., & Andriulli, F. P. (in press). On a low-frequency and refinement stable PMCHWT integral equation leveraging the quasi-Helmholtz projectors. IEEE Transactions on Antennas and Propagation, https://doi.org/10.1109/TAP.2017.2738061

Journal Article Type Article
Acceptance Date Jun 9, 2017
Online Publication Date Aug 11, 2017
Deposit Date Sep 14, 2017
Publicly Available Date Aug 12, 2018
Journal IEEE Transactions on Antennas and Propagation
Print ISSN 0018-926X
Electronic ISSN 0018-926X
Publisher Institute of Electrical and Electronics Engineers
Peer Reviewed Peer Reviewed
DOI https://doi.org/10.1109/TAP.2017.2738061
Public URL https://nottingham-repository.worktribe.com/output/877381
Publisher URL http://ieeexplore.ieee.org/document/8007283/
Additional Information 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Files





Downloadable Citations