Skip to main content

Research Repository

See what's under the surface

Advanced Search

Efficient calculation of molecular integrals over London atomic orbitals

Irons, Tom J.P.; Zemen, Jan; Teale, Andrew M.

Authors

Tom J.P. Irons

Jan Zemen

Andrew M. Teale andrew.teale@nottingham.ac.uk



Abstract

The use of London atomic orbitals (LAOs) in a non-perturbative manner enables the determination of gauge-origin invariant energies and properties for molecular species in arbitrarily strong magnetic fields. Central to the efficient implementation of such calculations for molecular systems is the evaluation of molecular integrals, particularly the electron repulsion integrals (ERIs). We present an implementation of several different algorithms for the evaluation of ERIs over Gaussian-type LAOs at arbitrary magnetic field strengths. The efficiency of generalized McMurchie-Davidson (MD), Head-Gordon-Pople (HGP) and Rys quadrature schemes is compared. For the Rys quadrature implementation, we avoid the use of high precision arithmetic and interpolation schemes in the computation of the quadrature roots and weights, enabling the application of this algorithm seamlessly to a wide range of magnetic fields. The efficiency of each generalised algorithm is compared by numerical application, classifying the ERIs according to their total angular momenta and evaluating their performance for primitive and contracted basis sets. In common with zero-field integral evaluation, no single algorithm is optimal for all angular momenta thus a simple mixed scheme is put forward, which selects the most efficient approach to calculate the ERIs for each shell quartet. The mixed approach is significantly more efficient than the exclusive use of any individual algorithm.

Journal Article Type Article
Journal Journal of Chemical Theory and Computation
Print ISSN 1549-9618
Electronic ISSN 1549-9626
Publisher American Chemical Society
Peer Reviewed Peer Reviewed
APA6 Citation Irons, T. J., Zemen, J., & Teale, A. M. (in press). Efficient calculation of molecular integrals over London atomic orbitals. Journal of Chemical Theory and Computation, doi:10.1021/acs.jctc.7b00540
DOI https://doi.org/10.1021/acs.jctc.7b00540
Publisher URL http://pubs.acs.org/doi/full/10.1021/acs.jctc.7b00540
Copyright Statement Copyright information regarding this work can be found at the following address: http://eprints.nottingh.../end_user_agreement.pdf

Files

lao_ints.pdf (488 Kb)
PDF

Copyright Statement
Copyright information regarding this work can be found at the following address: http://eprints.nottingham.ac.uk/end_user_agreement.pdf





You might also like



Downloadable Citations

;