Skip to main content

Research Repository

Advanced Search

Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations

Franchini, Nicola; Pani, Paolo; Maselli, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos A.R.; Radu, Eugen; Ferrari, Valeria

Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations Thumbnail


Authors

Nicola Franchini

Paolo Pani

Andrea Maselli

Leonardo Gualtieri

Carlos A.R. Herdeiro

Eugen Radu

Valeria Ferrari



Abstract

Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations (QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr’s geometry and to search for exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models and that the future eXTP mission or a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these objects can easily be ruled out as alternative models for x-ray source GRO J1655-40.

Citation

Franchini, N., Pani, P., Maselli, A., Gualtieri, L., Herdeiro, C. A., Radu, E., & Ferrari, V. (2017). Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations. Physical Review D, 95(12), Article 124025. https://doi.org/10.1103/PhysRevD.95.124025

Journal Article Type Article
Acceptance Date Jun 1, 2017
Publication Date Jun 14, 2017
Deposit Date Sep 8, 2017
Publicly Available Date Sep 8, 2017
Journal Physical Review D
Print ISSN 2470-0010
Electronic ISSN 2470-0029
Publisher American Physical Society
Peer Reviewed Peer Reviewed
Volume 95
Issue 12
Article Number 124025
DOI https://doi.org/10.1103/PhysRevD.95.124025
Public URL https://nottingham-repository.worktribe.com/output/866313
Publisher URL https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.124025
Additional Information © 2017 American Physical Society

Files





Downloadable Citations