Matthew F. Glasser
The Human Connectome Project's neuroimaging approach
Glasser, Matthew F.; Smith, Stephen M.; Marcus, Daniel S.; Andersson, Jesper L.R.; Auerbach, Edward J.; Behrens, Timothy E.J.; Coalson, Timothy S.; Harms, Michael P.; Jenkinson, Mark; Moeller, Steen; Robinson, Emma C.; Sotiropoulos, Stamatios N.; Xu, Junqian; Yacoub, Essa; Ugurbil, Kamil; Van Essen, David C.
Authors
Stephen M. Smith
Daniel S. Marcus
Jesper L.R. Andersson
Edward J. Auerbach
Timothy E.J. Behrens
Timothy S. Coalson
Michael P. Harms
Mark Jenkinson
Steen Moeller
Emma C. Robinson
Professor STAMATIOS SOTIROPOULOS STAMATIOS.SOTIROPOULOS@NOTTINGHAM.AC.UK
PROFESSOR OF COMPUTATIONAL NEUROIMAGING
Junqian Xu
Essa Yacoub
Kamil Ugurbil
David C. Van Essen
Abstract
Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.
Citation
Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J., Behrens, T. E., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C., Sotiropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The Human Connectome Project's neuroimaging approach. Nature Neuroscience, 19(9), https://doi.org/10.1038/nn.4361
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 18, 2016 |
Publication Date | Aug 26, 2016 |
Deposit Date | Apr 5, 2018 |
Publicly Available Date | Apr 5, 2018 |
Journal | Nature Neuroscience |
Print ISSN | 1097-6256 |
Electronic ISSN | 1546-1726 |
Publisher | Nature Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 19 |
Issue | 9 |
DOI | https://doi.org/10.1038/nn.4361 |
Keywords | Language; Neural circuits; Sensory processing |
Public URL | https://nottingham-repository.worktribe.com/output/804345 |
Publisher URL | https://www.nature.com/articles/nn.4361 |
Contract Date | Apr 5, 2018 |
Files
GlasserNN.pdf
(15.6 Mb)
PDF
You might also like
Objective QC for diffusion MRI data: artefact detection using normative modelling
(2024)
Journal Article
The spatial extent of anatomical connections within the thalamus varies across the cortical hierarchy in humans and macaques
(2024)
Preprint / Working Paper
Generalising XTRACT tractography protocols across common macaque brain templates
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search