Skip to main content

Research Repository

Advanced Search

Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population

Xie, Quan; Mayes, Sean; Sparkes, Debbie L.


Quan Xie

Associate Professor

Debbie L. Sparkes


Background and Aims: Tiller production and survival determine final spike number, and play key roles in grain yield formation in wheat (Triticum aestivum). This study aimed to understand the genetic and physiological basis of the tillering process, and its trade-offs with other yield components, by introducing genetic variation in tillering patterns via a mapping population of wheat × spelt (Triticum spelta).
Methods: The dynamics of tillering and red/far-red ratio (R:FR) at the base of a canopy arising from neighbouring plants in a bread wheat (Triticum aestivum ‘Forno’) × spelt (Triticum spelta ‘Oberkulmer’) mapping population were measured in the field in two growing seasons. Additional thinning and shading experiments were conducted in the field and glasshouse, respectively. Yield components were analysed for all experiments, followed by identification of quantitative trait loci (QTL) associated with each trait.
Key Results Large genetic variation in tillering was observed, and more fertile shoots per plant were associated with more total shoots initiated, faster tillering rate, delayed tillering onset and cessation, and higher shoot survival. A total of 34 QTL for tillering traits were identified, and analysis of allelic effects confirmed the above associations. Low R:FR was associated with early tillering cessation, few total shoots, high infertile shoot number and shoot abortion, and these results concurred with the thinning and shading experiments. These effects probably resulted from an assimilate shortage for tiller buds or developing tillers, due to early stem elongation and enhanced stem growth induced by low R:FR. More fertile tillers normally contributed to plant yield and grain number without reducing yield and grain set of individual shoots. However, there was a decrease in grain weight, partly because of smaller carpels and fewer stem water-soluble carbohydrates at anthesis caused by pleiotropy or tight gene linkages.
Conclusions: Tillering is under the control of both genetic factors and R:FR. Genetic variation in tillering and tolerance to low R:FR can be used to optimize tillering patterns for yield improvement in wheat.


Xie, Q., Mayes, S., & Sparkes, D. L. (2015). Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population. Annals of Botany, 117(1),

Journal Article Type Article
Acceptance Date Aug 11, 2015
Publication Date Sep 30, 2015
Deposit Date Sep 25, 2017
Publicly Available Date Sep 25, 2017
Journal Annals of Botany
Print ISSN 0305-7364
Electronic ISSN 1095-8290
Publisher Oxford University Press
Peer Reviewed Peer Reviewed
Volume 117
Issue 1
Keywords Carpel, grain number, grain weight, quantitative trait locus, QTL, red/far-red ratio, spelt, stem water-soluble carbohydrates, tillering, Triticum aestivum, Triticum spelta, wheat, yield
Public URL
Publisher URL
Additional Information This is a pre-copyedited, author-produced version of an article accepted for publication in Annals of Botany following peer review. The version of record Quan Xie, Sean Mayes, Debbie L. Sparkes; Optimizing tiller production and survival for grain yield improvement in a bread wheat?×?spelt mapping population, Annals of Botany, Volume 117, Issue 1, 1 January 2016, Pages 51–66, is available online at:


You might also like

Downloadable Citations