Professor SEAN MAY SEAN.MAY@NOTTINGHAM.AC.UK
PROFESSOR OF PLANT CYBER INFRASTRUCTURE
Professor SEAN MAY SEAN.MAY@NOTTINGHAM.AC.UK
PROFESSOR OF PLANT CYBER INFRASTRUCTURE
Zsuzsanna Bodi
Andrew Bottley
Dr NATHAN ARCHER Nathan.Archer@nottingham.ac.uk
ASSISTANT PROFESSOR
Professor SEAN MAY SEAN.MAY@NOTTINGHAM.AC.UK
PROFESSOR OF PLANT CYBER INFRASTRUCTURE
Professor RUPERT FRAY RUPERT.FRAY@NOTTINGHAM.AC.UK
PROFESSOR OF EPITRANSCRIPTOMICS
Sander Granneman
Editor
Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO’s (Fat Mass Obesity) N6-methyladenosine (m6 A) deaminase activity, thus suggesting a link between obesity-associated diseases and the presence of m6 A in mRNA. Another catalyst of the sudden rise in mRNA methylation research was the release of mRNA methylomes for human, mouse and Saccharomyces cerevisiae. However, the molecular function, or functions of this mRNA ‘epimark’ remain to be discovered. There is supportive evidence that m6 A could be a mark for mRNA degradation due to its binding to YTH domain proteins, and consequently being chaperoned to P bodies. Nonetheless, only a subpopulation of the methylome was found binding to YTHDF2 in HeLa cells.The model organism Saccharomyces cerevisiae, has only one YTH domain protein (Pho92, Mrb1), which targets PHO4 transcripts for degradation under phosphate starvation. However, mRNA methylation is only found under meiosis inducing conditions, and PHO4 transcripts are apparently non-methylated. In this paper we set out to investigate if m6 A could function alternatively to being a degradation mark in S. cerevisiae; we also sought to test whether it can be induced under non-standard sporulation conditions. We find a positive association between the presence of m6 A and message translatability. We also find m6 A induction following prolonged rapamycin treatment.
May, S. T., Bodi, Z., Bottley, A., Archer, N., May, S., & Fray, R. G. (2015). Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS ONE, 10(7), Article e0132090. https://doi.org/10.1371/journal.pone.0132090
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 11, 2015 |
Online Publication Date | Jul 17, 2015 |
Publication Date | Jul 17, 2015 |
Deposit Date | Oct 10, 2016 |
Publicly Available Date | Oct 10, 2016 |
Journal | PLOS ONE |
Electronic ISSN | 1932-6203 |
Publisher | Public Library of Science |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 7 |
Article Number | e0132090 |
DOI | https://doi.org/10.1371/journal.pone.0132090 |
Public URL | https://nottingham-repository.worktribe.com/output/756658 |
Publisher URL | http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132090 |
Additional Information | Bodi Z, Bottley A, Archer N, May ST, Fray RG (2015) Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS ONE 10(7): e0132090. doi:10.1371/journal.pone.0132090 |
Contract Date | Oct 10, 2016 |
Bodi er al 2015 PLoS ONE.pdf
(3.2 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by/4.0
The expanding role of cap-adjacent modifications in animals
(2024)
Journal Article
Epitranscriptomic mechanisms of androgen signalling and prostate cancer
(2024)
Journal Article
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search