A.I. Casian
Thermoelectric properties of nanostructured tetrathiotetracene iodide crystals: 3D modeling
Casian, A.I.; Sanduleac, I.I.
Authors
I.I. Sanduleac
Abstract
A more complete three-dimensional (3D) physical model for nanostructured crystals of tetrathiotetracene iodide, TTT2I3 is presented. Therestrictions on the thermoelectric figure of merit ZT that this model involves are determined. At the same time, the criteria of application of simplified 1D model are defined more precisely. In TTT2I3 crystals the carriers are holes. As earlier, two interaction mechanisms of holes with acoustic phonons are considered, generalized for 3D case. One interaction is similar to that of polaron and other to that of deformation potential. Interaction of carriers with impurities and defects is also taken into account. Along chains (x direction) the transport mechanism is of the band type, but in the transversal directions it is of hopping type. The electrical conductivity σxx, the thermopower (Seebeck coefficient) Sxx the electronic thermal conductivity Kexx and (ZT)xx along the conductive chains have been modelled for the first time in the 3D model. Optimal parameters which predict a considerable increase of (ZT)xx are determined.
Citation
Casian, A., & Sanduleac, I. (2015). Thermoelectric properties of nanostructured tetrathiotetracene iodide crystals: 3D modeling. Materials Today: Proceedings, 2(2), https://doi.org/10.1016/j.matpr.2015.05.069
Journal Article Type | Article |
---|---|
Publication Date | Jun 11, 2015 |
Deposit Date | Jan 13, 2016 |
Publicly Available Date | Jan 13, 2016 |
Journal | Materials Today: Proceedings |
Electronic ISSN | 2214-7853 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 2 |
Issue | 2 |
DOI | https://doi.org/10.1016/j.matpr.2015.05.069 |
Keywords | Tetrathiotetracene iodide; nanostructured crystals; electrical conductivity; thermopower; thermoelectric figure of merit |
Public URL | https://nottingham-repository.worktribe.com/output/754667 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S2214785315001406 |
Additional Information | A paper produced for the H2ESOT project, a collaborative FP7 funded project led by Professor Simon Woodward from University of Nottingham and supported under the EU ENERGY Theme for Future Emerging Technologies |
Files
A_Casian-Mat.Today Proc. 2015,2,504-509.pdf
(386 Kb)
PDF
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search