Edward A. Briggs
A density functional theory based analysis of photoinduced electron transfer in a triazacryptand based K+ sensor
Briggs, Edward A.; Besley, Nicholas A.
Authors
Nicholas A. Besley
Abstract
The electronic structure and photoinduced electron transfer processes in a K+ fluorescent sensor that comprises a 4-amino-naphthalimide derived fluorophore with a triazacryptand lig- and is investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) in order to rationalise the function of the sensor. The absorption and emission energies of the intense electronic excitation localised on the fluorophore are accurately described using a ∆SCF Kohn-Sham DFT approach, which gives excitation energies closer to experiment than TDDFT. Analysis of the molecular orbital diagram arising from DFT calculations for the isolated molecule or with implicit solvent cannot account for the function of the sensor and it is necessary to consider the relative energies of the electronic states formed from the local excitation on the fluorophore and the lowest fluorophore→chelator charge transfer state. The inclusion of solvent in these calculations is critical since the strong interaction of the charge transfer state with the solvent lowers it energy below the local fluorophore excited state making a reductive photoinduced electron transfer possible in the absence of K+, while no such process is possible when the sensor is bound to K+. The rate of electron transfer is quantified using Marcus theory, which gives a rate of electron transfer of k_ET=5.98 x 10^6 s−1.
Citation
Briggs, E. A., & Besley, N. A. (2015). A density functional theory based analysis of photoinduced electron transfer in a triazacryptand based K+ sensor. Journal of Physical Chemistry A, 119(12), https://doi.org/10.1021/acs.jpca.5b01124
Journal Article Type | Article |
---|---|
Publication Date | Mar 3, 2015 |
Deposit Date | Mar 2, 2016 |
Publicly Available Date | Mar 2, 2016 |
Journal | Journal of Physical Chemistry A |
Print ISSN | 1089-5639 |
Electronic ISSN | 1520-5215 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 119 |
Issue | 12 |
DOI | https://doi.org/10.1021/acs.jpca.5b01124 |
Keywords | photoinduced electron transfer, density functional theory |
Public URL | https://nottingham-repository.worktribe.com/output/748203 |
Publisher URL | http://pubs.acs.org/doi/abs/10.1021/acs.jpca.5b01124 |
Additional Information | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.jpca.5b01124. |
Files
jpca-sensor.pdf
(1.1 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc/4.0
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search