Dr REUBEN O'DEA REUBEN.ODEA@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
A multiscale analysis of nutrient transport and biological tissue growth in vitro
O'Dea, Reuben D.; Nelson, Martin, R.; El Haj, A.; Waters, Sarah L.; Byrne, Helen M.
Authors
Martin, R. Nelson
A. El Haj
Sarah L. Waters
Helen M. Byrne
Abstract
In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenisation method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterised by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection--reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally-relevant microstructural information in order to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.
Citation
O'Dea, R. D., Nelson, M. R., El Haj, A., Waters, S. L., & Byrne, H. M. (2014). A multiscale analysis of nutrient transport and biological tissue growth in vitro. Mathematical Medicine and Biology, https://doi.org/10.1093/imammb/dqu015
Journal Article Type | Article |
---|---|
Publication Date | Oct 15, 2014 |
Deposit Date | Dec 5, 2014 |
Publicly Available Date | Dec 5, 2014 |
Journal | Mathematical Medicine and Biology |
Print ISSN | 1477-8599 |
Electronic ISSN | 1477-8602 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
DOI | https://doi.org/10.1093/imammb/dqu015 |
Keywords | multiscale homogenization; porous flow; tissue engineering |
Public URL | https://nottingham-repository.worktribe.com/output/738180 |
Publisher URL | http://imammb.oxfordjournals.org/content/early/2014/10/15/imammb.dqu015.short |
Additional Information | This is a pre-copyedited, author-produced PDF of an article accepted for publication in Mathematical Medicine and Biology following peer review. The version of record is available online at: http://imammb.oxfordjournals.org/content/early/2014/10/15/imammb.dqu015.short |
Files
Porous_growth.pdf
(2.9 Mb)
PDF
You might also like
Describing financial crisis propagation through epidemic modelling on multiplex networks
(2024)
Journal Article
Stability analysis of electrical microgrids and their control systems
(2024)
Journal Article
A dynamical model of TGF-β activation in asthmatic airways
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search